Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

AIEE Active Dual-State Emissive Tripodal Pyridopyrazine Derivatives as Multi-Stimuli Responsive Smart Organic Materials

Monika Lamoria,^a Debashree Manna,^b Marilyn Daisy Milton^{a*}

^aFunctional Organic Molecules Synthesis Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India

^bInstitute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo n'am. 2, Prague 6, Praha 16610,

Czech Republic

*Email: mdmilton@chemistry.du.ac.in

1.	¹ H NMR and ¹³ C NMR spectra of PP1-PP5	Fig. S1-S10
2.	HRMS spectra of PP1-PP5	Fig. S11-S15
3.	Crystal data of PP4	.Table S1
4.	Emission data in different solvents	Table S2
5.	Photophysical properties	Fig. S16-S27
6.	Average particle size of aggregates	Table S3
7.	Limits of detection for PP1-PP5	Table S4
8.	DFT studies	Fig. S28-S35
9.	TDDFT absorption and emission wavelengths	Table S5
10	. Temperature dependent changes for PP1-PP5	Fig. S36
11.	. TGA curves for PP1-PP5	Fig. S37

Fig. S1. ¹H NMR (400 MHz, CDCl₃) spectrum of 2,3-di([1,1'-biphenyl]-4-yl)-7-phenylpyrido[2,3-b]pyrazine (PP1)

Fig. S2. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2,3-di([1,1'-biphenyl]-4-yl)-7-phenylpyrido[2,3-b]pyrazine (PP1)

Fig. S3. ¹H NMR (400 MHz, CDCl₃) spectrum of 2,3-bis(4'-methyl-[1,1'-biphenyl]-4-yl)-7-(p-tolyl)pyrido[2,3-b]pyrazine (PP2)

Fig. S4. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2,3-bis(4'-methyl-[1,1'-biphenyl]-4-yl)-7-(p-tolyl)pyrido[2,3-b]pyrazine (PP2)

Fig. S5. ¹H NMR (400 MHz, CDCl₃) spectrum of 7-(pyridin-4-yl)-2,3-bis(4-(pyridin-4-yl)phenyl)pyrido[2,3-b]pyrazine (PP3)

Fig. S6. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7-(pyridin-4-yl)-2,3-bis(4-(pyridin-4-yl)phenyl)pyrido[2,3-b]pyrazine (PP3)

Fig. S7. ¹H NMR (400 MHz, CDCl₃) spectrum of 2,3-bis(4'-methoxy-[1,1'-biphenyl]-4-yl)-7-(4-methoxyphenyl)pyrido[2,3-b]pyrazine (PP4)

Fig. S8. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2,3-bis(4'-methoxy-[1,1'-biphenyl]-4-yl)-7-(4-methoxyphenyl)pyrido[2,3-b]pyrazine (PP4)

Fig. S9. ¹H NMR (400 MHz, CDCl₃) spectrum of 4',4'''-(7-(4-formylphenyl)pyrido[2,3-b]pyrazine-2,3-diyl)bis(([1,1'-biphenyl]-4-carbaldehyde)) (PP5)

Fig. S10. ¹³C NMR (100 MHz, CDCl₃) spectrum of 4',4'''-(7-(4-formylphenyl)pyrido[2,3-b]pyrazine-2,3-diyl)bis(([1,1'-biphenyl]-4-carbaldehyde)) (PP5)

Compound Table

							Diff		
Co	mpound Label	RT	Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula
	Cpd 1: C37 H25 N3	0.078	511.2057	737667	C37 H25 N3	511.2048	1.58	C37 H25 N3	C37 H25 N3
Compo	und Label	m/z	RT	Algorith	m Mass				
Cpd 1: (C37 H25 N3	512.213	0.078	Find By F	ormula 511.2	057			
10.5	Cod 1. C37	H25 N	3. + ED	E Sport		44			
10 5	000 1. 007	1123 14	J. + FB	r spec	ctrum (0.061-0.	144 min)			
8-					512.2130				
7-	1 A.				(M+ _H)+				
6-									
5									
5-									
4 -									
3-					1				
2-							534.1	941	
1.	·						(M+N	a)+	
							1		
0.	485 490	495	500	505	510 515 52	0 525 5	30 5	35 540 545 5	50 555 560
	400 490	455	000	000	Counts vs. M	lass-to-Cha	rge (m/	z)	

Fig. S11. HRMS spectrum of 2,3-di([1,1'-biphenyl]-4-yl)-7-phenylpyrido[2,3-b]pyrazine (PP1)

Compound Table

Fig. S12. HRMS spectrum of 2,3-bis(4'-methyl-[1,1'-biphenyl]-4-yl)-7-(p-tolyl)pyrido[2,3-b]pyrazine (PP2)

Fig. S13. HRMS spectrum of 7-(pyridin-4-yl)-2,3-bis(4-(pyridin-4-yl)phenyl)pyrido[2,3-b]pyrazine (PP3)

Compound Table

Fig. S14. HRMS spectrum of 2,3-bis(4'-methoxy-[1,1'-biphenyl]-4-yl)-7-(4-methoxyphenyl)pyrido[2,3-b]pyrazine (PP4)

Fig. S15. HRMS spectrum of 4',4"'-(7-(4-formylphenyl)pyrido[2,3-b]pyrazine-2,3-diyl)bis(([1,1'-biphenyl]-4-carbaldehyde)) (PP5)

Identification code	PP4
Empirical formula	$C_{40}H_{31}N_3O_3$
Formula weight	601.710
Temperature/K	298.0
Crystal system	Monoclinic
Space group	P21/c
a/Å	13.2222(5)
b/Å	21.5979(8)
c/Å	12.2263(4)
α/°	90
β/°	116.927(2)
$\gamma/^{\circ}$	90
Volume/Å3	3113.0(2)
Z	4
pcalcg/cm3	1.284
μ/mm-1	0.649
F(000)	1267.9
Crystal size/mm3	$0.335 \times 0.206 \times 0.031$
Radiation	Cu Ka ($\lambda = 1.54178$)
2Θ range for data collection/°	7.5 to 137.16
Index ranges	$-15 \le h \le 15, -25 \le k \le 26, -14 \le l \le 14$
Reflections collected	52329
Independent reflections	5639 [Rint = 0.0863, Rsigma = 0.0539]
Data/restraints/parameters	5639/0/429
Goodness-of-fit on F2	1.118
Final R indexes [I>=2 σ (I)]	R1 = 0.0917, wR2 =0.2514
Final R indexes [all data]	R1 = 0.1336, $wR2 = 0.3320$
	0.0(1.0.27

 Table S1. Crystal data and structure refinement for PP4

Fig. S16. CIE chromaticity diagrams for PP1-PP5 in solution and solid state respectively.

Table S2: The emission data of compounds PP1, PP2 and PP4 in solvents of differing polarity.

	Compound	Toluene	THF	CHCl ₃	CH ₃ CN	DMSO	$\Delta \lambda_{em} (nm)$
λ _{em}	PP1	446	448	447	449	456	10
(nm)	PP2	440	449	455	456	467	18
	PP4	455	473	475	499	518	63

Fig. S17. Normalized emission spectra of PP1-PP2 and PP4 (2×10^{-5} M) in solvents of differing polarity.

Fig. S18. Emission spectra of PP1, PP3-PP5 $(2 \times 10^{-5} \text{M})$ in THF-H₂O fractions.

Compound	f_w (%H ₂ O)	Average diameter (nm)
	0	420.6
PP1	70	1800
	90	715.6
	0	761.3
PP2	50	1575
	90	803.8
DD2	0	442.6
FF3	90	3316
	0	1969
PP4	70	3134
	90	2133
	0	924
PP5	80	1957
	90	1279

Table S3: Average particle size of the aggregates at different THF-H₂O fractions.

Fig. S19. The emission spectra of PP1, PP3-PP5 $(2 \times 10^{-5} \text{M})$ in presence of 0.02 mL of different acids in CHCl₃.

Fig. S20. The emission $(2 \times 10^{-5} \text{ M})$ and absorption $(1 \times 10^{-5} \text{ M})$ spectra of PP1, PP3-PP5 as a function of the concentration of TFA added in CHCl₃. Inset: Photographs in CHCl₃ before and after addition of TFA under UV light (365 nm).

Fig. S21. Spectral overlap between the absorbance of protonated form and emission of neutral form of PP1, PP3 and PP5 in CHCl₃.

Fig. S22. Emission spectra of **PP1**, **PP3-PP5** after sequential addition of TFA and TEA in CHCl₃ (inset: Images after sequential addition of TFA and TEA in CHCl₃ under UV light) and solid state.

Fig. S23. Partial ¹H-NMR (400 MHz, CDCl₃) titration spectra of PP1 on sequential addition of 3 eq. of TFA and TEA.

Fig. S24. Jobs plot to find binding stoichiometry of PP1-PP5 (1×10^{-5} M) with TFA in CHCl₃.

Fig. S25. Absorption and emission spectra of PP2-PP5 showing selectivity of probes towards Hg²⁺ in presence of other competitive metal ions in THF-H₂O mixtures.

Fig. S26. The emission spectra of PP2-PP5 as a function of Hg^{2+} equivalents in THF-H₂O mixtues.

Fig. S27. Job's plot for PP1 showing 1:1 binding stoichiometry with Hg^{2+} .

Compounds	D.L. of TFA	D.L. of Hg ²⁺	
	(μM)	(nM)	
PP1	1.39	11.24	
PP2	1.20	18.59	
PP3	6.00	26.28	
PP4	0.35	2.74	
PP5	0.78	9.36	

Table S4: Limits of detection of PP1-PP5 for TFA (in $CHCl_3$) and Hg^{2+} ions (in $THF-H_2O$).

Fig. S28. Optimized structures of (a) PP1, (b) PP2, (c) PP3, (d) PP4, (e) PP5 (Color code: C-grey, N-blue, H-white, O-red).

Fig. S29. The HOMO of PP1-PP5.

Fig. S30. The LUMO of PP1-PP5.

Fig. S31. Electrostatic potential mapped on the electron density surface of **PP1-PP5** (iso-value = 0.02 a.u.). Red centers indicate electron-rich centers.

Table S5. Calculated TDDFT absorption and emission wavelengths (nm), oscillator strengths, and major composition in ter	ms of MO
contribution for PP1-PP5 .	

Compound	λ _{abs} (nm)	Oscillator strengths _{abs}	λ _{em} (nm)	Oscillator strengths _{em}	Major composition
PP1	390.96	0.8254	467.73	1.1468	HOMO \rightarrow LUMO (69%)
PP2	400.63	0.8731	478.74	1.2148	HOMO \rightarrow LUMO (69%)
PP3	376.62	0.6655	410.69	0.9872	HOMO \rightarrow LUMO (62%)
PP4	419.39	0.8770	499.22	1.2063	HOMO \rightarrow LUMO (69%)
PP5	392.43	1.1616	482.44	1.7121	HOMO \rightarrow LUMO (69%)

Fig. S32. The HOMO for complexes of Hg^{2+} with PP1-PP3, PP5 (iso-value = 0.03 a.u.).

Fig. S33. The LUMO for complexes of Hg^{2+} with PP1-PP3, PP5 (iso-value = 0.03 a.u.).

Fig. S34. The HOMO for complexes of TFA with PP1-PP5 (iso-value = 0.03 a.u.).

Fig. S35. The LUMO for complexes of TFA with **PP1-PP5** (iso-value = 0.03 a.u.).

Fig. S36. Temperature dependent changes in the emission spectra of PP1-PP5 in CHCl₃ (1×10^{-5} M).

Fig. S37. TGA profiles of PP1-PP5 representing their decomposition temperatures at 5% weight loss.