Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Tunable valley polarization and magnetic anisotropy by polarization

reversal in Ni₂Cl₃I₃/AgBiP₂S₆ heterojunction

Xu Zhang, Bo Chen, Baozeng Zhou*, and Xiaocha Wang*

Tianjin Key Laboratory of Film Electronic & Communicate devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

*Corresponding Authors

<u>baozeng@tju.edu.cn</u> (Baozeng Zhou)

wangxc@email.tjut.edu.cn (Xiaocha Wang)

Fig. S1 Phonon spectrum of (a) AgBiP₂S₆ and (b) Ni₂Cl₃I₃. Variations of the total potential energy of (c) AgBiP₂S₆ and (d) Ni₂Cl₃I₃ in AIMD simulations at 300 K.

Fig. S2 The magnetic moment and heat capacity as functions of temperature for (a) $Ni_2Cl_3I_3$ and (b) $Ni_2Cl_3I_3/AgBiP_2S_6$.

Fig. S3 The band structures of $Ni_2Cl_3I_3/AgBiP_2S_6$ calculated by the (a) PBE+U and (b) HSE06.

Fig. S4 The band structures of $Ni_2Cl_3I_3/AgBiP_2S_6$ using the PBE+U after applying biaxial strain.

Fig. S5 The band structures of $Ni_2Cl_3I_3/AgBiP_2S_6$ using the PBE+U after applying biaxial strain.

Fig. S6 The band structures of $Ni_2Cl_3I_3/AgBiP_2S_6$ after applying biaxial strain and SOC.

Fig. S7 The MAE of Ni, Ag and Bi atoms in model-2↓ after applying biaxial strain.