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Machine learning methods

In this work, AlGaN-based DUV LEDs grown on a c-plane sapphire substrate serve 
as a representative device for discussion. During data preprocessing, methods such as 
data missing value padding, data outlier deleting, data standardization, and data 
segmentation are employed. After these preprocessing, 378 effective samples recorded 
from published papers over past 17 years are selected for predicting LOPD, with 302 
samples for training, 38 samples for validation, and the remaining 38 samples 
designated for testing.
  Four ML algorithms are implemented with python language. The parameters are set 
as follows:
1. RF: we set the maximum depth to 15, the number of estimators to 100, and specified 

the parameters min_samples_leaf to 1 and min_samples_split to 2.
2. XGBoost: We set the maximum depth to 8, the minimum child weight to 2, the 

subsample ratio to 0.6, the column sample by tree to 1, and the number of estimators 
to 800.

3. FNN: We design a neural network that consists of three hidden layers. The first 
hidden layer contains 128 neurons, the second hidden layer consists of 32 neurons, 
and the third hidden layer comprises 8 neurons. ReLU is employed as the activation 
function, and the Adam optimization algorithm is selected for training. The entire 
model will undergo training for 2048 epochs.

4. CNN: weights are initialized with Glorot normal for 2 convolutional layers with the 
kernel number of  8 and 8. The kernel size is 3×3 and the dropout rate is set to 
0.15. After the convolution operation, the feature map is flattened into a one-
dimensional vector and subsequently processed by a fully connected layer 
containing 15 neurons. The epoch is set to 2500, while the ReLU activation function 
and Adam optimization algorithm are retained.

Table S1. Structural characteristic parameters, electrical characteristic 

parameters, and their corresponding abbreviations designed to predict the 

LOPD.

Input Features

Feature Abbreviation Feature Abbreviation

Thickness of the n-type AlGaN   
layer

N-T Magnesium doping concentration in 
the first piece of the electron blocking 

layer

E1-dop



Aluminum content in the n-type 
AlGaN layer

N-Al Thickness of the second piece of the 
electron blocking layer

E2-T

Silicon doping concentration in the n-
type AlGaN layer

N-dop Average aluminum content in the 
second piece of the electron blocking 

layer

E2-Al

The number of quantum well MQW-P Gradient of aluminum content 
variation from the beginning to the 

end of the second piece of the 
electron blocking layer

E2-K-Al

Total thickness of each barrier B-T Magnesium doping concentration in 
the second piece of the electron 

blocking layer

E2-dop

Average aluminum content in the first 
piece of the barrier

B1-Al Thickness of the third piece of the 
electron blocking layer

E3-T

Gradient of aluminum content 
variation from the beginning to the 
end of the first piece of the barrier

B1-K-Al Average aluminum content in the 
third piece of the electron blocking 

layer

E3-Al

Silicon doping concentration in the 
first piece of the barrier

B1-dop-n Magnesium doping concentration in 
the third piece of the electron 

blocking layer

E3-dop

Thickness of the second piece of the 
barrier

B2-T Number of periods in the p-type 
AlGaN layer

P-P

Average aluminum content in the 
second piece of the barrier

B2-Al Total thickness of the p-type AlGaN 
layer

P-T

Gradient of aluminum content 
variation from the beginning to the 

end of the second piece of the barrier

B2-K-Al Average aluminum content in the first 
piece of the p-type AlGaN layer

P1-Al

Thickness of the third piece of the 
barrier

B3-T Gradient of aluminum content 
variation from the beginning to the 
end of the first piece of the p-type 

AlGaN layer

P1-K-Al

Average aluminum content in the 
third piece of the barrier

B3-Al Magnesium doping concentration in 
the first piece of the p-type AlGaN 

layer

P1-dop

Gradient of aluminum content 
variation from the beginning to the 
end of the third piece of the barrier

B3-K-Al Thickness of the second piece of the 
p-type AlGaN layer

P2-T



Total thickness of each well W-T Average aluminum content in the 
second piece of the p-type AlGaN 

layer

P2-Al

Average aluminum content in the first 
piece of the well

W1-Al Gradient of aluminum content 
variation from the beginning to the 

end of the second piece of the p-type 
AlGaN layer

P2-K-Al

Gradient of aluminum content 
variation from the beginning to the 

end of the first piece of the well

W1-K-Al Magnesium doping concentration in 
the second piece of the p-type AlGaN 

layer

P2-dop

Thickness of the second piece of the 
well

W2-T Thickness of the p-type GaN layer P-GaN-T

Average aluminum content in the 
second piece of the well

W2-Al Magnesium doping concentration in 
the p-type GaN layer

P-GaN-dop

Number of periods in the electron 
blocking layer

E-P The Shockley-Read-Hall lifetime SRH lifetime

Total thickness of the electron 
blocking layer

E-T The Auger recombination coefficient Auger

Average aluminum content in the first 
piece of the electron blocking layer

E1-Al Charge passing through a unit area 
per unit time

Current 
Density

Gradient of aluminum content 
variation from the beginning to the 
end of the first piece of the electron 

blocking layer

E1-K-Al

Output Feature

Feature Abbreviation

Light output power density LOPD

Figure S1. (a) RMSE scatter plot for the testing set at each sample size. 

(b) R2 scatter plot for the testing set at each sample size.



High-throughput experiments (as shown in Figure S2a) are conducted to investigate 
the variation in luminous performance of the device structure with changes in E1-Al 
and E1-dop (Magnesium doping concentration in the first piece of the electron blocking 
layer). The experimental results indicate that E1-Al is a critical feature in AlGaN-based 
DUV LEDs, with its underlying mechanism exhibiting significant multidimensional 
coupling characteristics. Specifically, an increase in the Al composition may lead to 
heightened lattice mismatch stress, thereby increasing the interface defect density. 
Moreover, excessively high barrier heights may hinder the effective injection of holes, 
consequently weakening the overall luminous performance. When E1-Al interacts with 
other structural characteristic parameters, fluctuations in SHAP values (as shown in 
Figure S2b) exhibit significant variation in both range and direction, suggesting that 
the influence of E1-Al is highly dependent and involves complex coupling effects. 
Taking E1-dop as an example, when the Al composition is higher in the samples, E1-
dop typically also shows higher values. This correlation may reflect the need for a 
higher doping concentration at elevated Al composition to alleviate hole injection 
difficulties caused by increased barrier height. This interaction suggests that, in 
optimizing the performance of DUV LEDs, adjustments to both E1-Al and E1-dop 
should be considered together to improve luminous performance.

Figure S2. (a) 3D-thermal contour map of LOPD predictions with respect 

to E1-Al and E1-dop. (b) SHAP dependency plots for critical features in 

the CNN model, specifically for the features E1-Al and E1-dop.




