Suppressed P2-Z phase transition and Fe-migration in Na layered of Fe/Mn-based layered oxide cathode for advanced sodium-ion batteries

Wei Zhao ^{a, b, c}, Shaohua Luo ^{a, b, c}*, Lixiong Qian ^{a, b, c}*, Rui Huang ^{a, b, c}, Ge Wang ^{a, b,}

^c, Haoran Zhang ^{a, b, c}, Guodong Hao ^{a, b, c}, Shengxun Yan ^{a, b, c}

a School of Materials Science and Engineering, Northeastern University, Shenyang 110819,

Liaoning, China

b School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, Hebei China

c Hebei Key Laboratory of Dielectric and Electrolyte Functional Material, Northeastern University

at Qinhuangdao, Qinhuangdao 066004, Hebei China

*Corresponding authors.

E-mail addresses: tianyanglsh@163.com (S.-H. Luo).

Supplementary Figures and Tables

Na-ion diffusion coefficient (D_{Na}) calculation based on GITT results:

The Na-ion diffusion coefficient D_{Na} is calculated from the simplified equation:

$$D_{Na} = \frac{4}{\pi \tau} \left(\frac{m_B V_M}{M_B A}\right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau}\right)^2,$$
 where the ΔE_τ is the transient voltage change caused by applying
a constant current *i* during a constant current pulse τ , ΔE_S is the steady state voltage
variation, τ duration time of the current pulse, M_B is the molar mass (g mol⁻¹), A is the
total contact area of the electrode with the electrolyte, m_B is the mass of active material,
 V_M is the molar volume of electrode materical (cm³ mol⁻¹)^{1,2}.

Na-Ion Diffusion Coefficients Calculation Based on CV results:

The D_{Na} values can also be analysed by the following Randles-Sevcik equation:

 $i_p = 2.69 \times 10^5 n^{3/2} AD_{Na}{}^{1/2} C_{Na} v^{1/2}$, where i_p (A) is the peak current, A (cm²) is the direct contact area between electrode and electrolyte, C_{Na} is the Na-ion concentration in the electrode, v (V s⁻¹) is the scan rate, and n is the number of transferred electrons. Figure 3c shows the linear relationship between the peak current (i_p) and the scan rate ($v^{1/2}$), Based on the linear relationships between i_p and $v^{1/2}$ of the redox peaks (Figure 4d)^{3,4}.

Figure S1 Rietveld refinements of the XRD patterns for a) NFM, b) NFMT-1 and (c) NFMT-3 cathode materials.

Figure S2. SEM images of (a) NFM, (b) NFMT-1, (c) NFMT-3.

Figure S3 SEM-EDS images of (a-f) NFMT-2.

Figure S4. Linear relationships of $\log i_p$ versus $\log v$.

Samples	NFM	MFMT-1	MFMT-2	MFMT-3
Lattice	Hexagonal	Hexagonal	Hexagonal	Hexagonal
Space group	P63/mmc	P63/mmc	P63/mmc	P63/mmc
<i>a=b</i> (Å)	2.9321	2.9384	2.9403	2.9412
<i>C</i> (Å)	11.2043	11.2057	11.2081	11.2087
$V(\text{\AA}^3)$	83.3579	83.7898	83.91622	83.9721
$R_{\rm p}$ (%)	4.41	4.52	4.28	4.21
R_{wp} (%)	7.67	7.57	6.92	7.10

Table S1. Detailed structural information of NFM, NFMT-1,2,3 determined from theRietveld refined XRD pattern.

Table S2. 57 Fe-Mössbauer spectroscopy parameters of NFM and NFMT-2 charged to4.3 V.

Sample	IS/mm s ⁻¹	QS/mm s ⁻¹	FWHM/mm s ⁻¹	Relative intensity
NFMT-2	0.32622	0.68388	0.31703	$(72.8\%) \mathrm{Fe}^{3+}$
	0.42373	0.73671	0.31871	(27.42%) Fe ⁴⁺
NFM	0.37776	0.86196	0.32486	$(68.85\%) \operatorname{Fe}^{3+}$
	0.33976	0.62058	0.33501	(31.15%) Fe ⁴⁺

References

- 1 S. Feng, C. Zheng, Z. Song, X. Wu, M. Wu, F. Xu and Z. Wen, *Chem Eng. J.*, 2023, **475**, 146090.
- 2Q. Shen, X. Zhao, Y. Liu, Y. Li, J. Zhang, N. Zhang, C. Yang and J. Chen, *Adv. Sci.*, 2020, 7, 2002199.
- 3 Y. Hou, J. Jin, C. Huo, Y. Liu, S. Deng and J. Chen, *Energy Storage Mater.*, 2023, **56**, 87–95.
- 4Y. Liu, Q. Shen, X. Zhao, J. Zhang, X. Liu, T. Wang, N. Zhang, L. Jiao, J. Chen and L. Fan, *Adv. Funct. Mater.*, 2020, **30**, 1907837.