Supporting Information

Broadband and Warm White Emission in Cs₂In_{1-x}Cl₅·H₂O:xAg⁺ Phosphors Enabled by H₃PO₂ -Mediated Stabilization

Ying Qin^a, Yuexiao Pan^{a,*}, Haoshuai Wan^a, Tiantian Zhao^a, Weiyou Xu^a, Qian Miao^{a,*}, Jun

Zou $^{b,c}*$

^aKey Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and

Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China.

E-mail: yxpan@wzu.edu.cn

^b Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou

325024, China;

^c School of Science, Shanghai Institute of Technology, Shanghai, 201418, China;

E-mail: zoujun@sit.edu.cn

Figure:

Fig. S1 XPS full spectrum of S7-CICH:Ag⁺.

Fig. S2 High-resolution XPS spectra of Cs 3d, In 3d and Cl 2p in S1-CICH, S9-CICH

and S7-CICH:Ag⁺.

Fig. S3 Tauc-plot of the UV-vis absorption spectrum of S1-CICH.

Fig. S4 XRD patterns of CICH:7%Ag⁺ at different HPA levels.

Fig. S5 PLE spectra of CICH:7%Ag⁺ at different HPA levels under 554 nm emission.

Fig. S6 PLQY measurement of S7-CICH:Ag⁺ crystals in an integrated sphere with 299

nm excitation source.

Fig. S7 TG-DTA curves of (a) S1-CICH and (b) S9 sample.

Table:

Table. S1 The result ICP-OES measurements for CICH:7%Ag⁺ at different mounts of

	Actual In	Actual Ag	A / 1 A / T
Volume (µL)	concentration	concentration	Actual Ag to In molar ratio
	(mg/mL)	(mg/mL)	
150	197.45	1.16	0.6%
400	195.69	2.34	1.2%
550	182.62	5.12	2.8%
600	179.15	7.31	4.1%