Supplementary information

CaLuGaO₄: Bi³⁺, Al³⁺ blue phosphor with excellent thermal stability for multiple LED applications

Zhicheng Liao^a, Qian Zhang^b, Liting Qiu^c, Xiantao Wei^d, Yonghu Chen^{*b}, Min Yin^{*b}

^a CAS Key Laboratory of Microscale Magnetic Resonance, and School of Physical Sciences, University

of Science and Technology of China, Hefei 230026, China

^b Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School

of Physical Sciences, University of Science and Technology of China, Hefei 230026, PR China

^c School of Mechanical, Electronic & Information Engineering, Putian University, Putian 351100, P. R.

China

^d Physics Experiment Teaching Center, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, PR China

* Corresponding authors.

E-mail addresses: yhuchen@ustc.edu.cn (Y. Chen), yinmin@ustc.edu.cn (M. Yin)

Fig. S1 (a) Room temperature fluorescence decay curves of CaLuGaO₄: $0.004Bi^{3+}$ with the monitoring wavelength ranging from 390 nm to 600 nm. (b) PL spectra of CaLuGaO₄: $0.004Bi^{3+}$ within two separate time windows, 0 - 400 ns and 400 - 10000 ns, after the termination of 355 nm excitation.

Fig. S2 The Gaussian fitting of the PL spectra of CaLuGaO₄: Bi³⁺ excited at 335 nm and 360 nm.

Fig. S3 (a) PLE spectra of CaLuGaO₄: xBi^{3+} under 430 nm monitoring wavelength. (b) PL spectra of CaLuGaO₄: xBi^{3+} under 335 nm excitation wavelength.

Fig. S4 Room temperature fluorescence decay curves of CaLuGa_{1-y}Al_yO₄: $0.004Bi^{3+}$ (y = 0 - 0.4) monitored at 430 nm.

Fig. S5 IQE-based PL spectra of CaLuGaO₄: 0.004Bi³⁺ and CaLuGa_{0.7}Al_{0.3}O₄: 0.004Bi³⁺.

Fig. S6(a) Thermoluminescence curves of CaLuGaO₄: 0.004Bi³⁺, yAl³⁺ in the temperature of 313 – 673
K, (b) Thermoluminescence curves of CaLuGaO₄: 0.004Bi³⁺, 0.3Al³⁺ at various time intervals following the cessation of excitation light.

Table S1 Bond length data of CaLuGaO4 obtained from Rietveld refinement

Atom 1	Atom 2	Counts	Bond length (Å)
Ca	O1	2	2.294
	O2	2	2.397
	O3	2	2.274
Lu	O1	1	2.325
	O2	2	2.265
	O2	2	2.403
	O3	1	2.303
Ga	O1	1	1.770
	O2	2	1.833
	O3	1	1.756

Table S2 Specific parameter values necessary for the calculation of he and E_{sp}

Parameter	Ca site	Parameter	Lu site
BVP(Ca)	1.967	BVP(Lu)	1.971
Q(Ca)	2.324	Q(Lu)	2.319
Q(O1)	1.550	Q(O1)	1.546
Q(O2)	1.550	Q(O2)	1.546
Q(O3)	1.550	Q(O3)	1.546
$f_{c(\text{Ca-O1})}$	0.195	$f_{c(\text{Lu-O1})}$	0.199
$f_{c(\text{Ca-O2})}$	0.192	$f_{c(Lu-O2)}$	0.198
$f_{c(\text{Ca-O3})}$	0.196	$f_{c(Lu-O3)}$	0.199
α (Ca-O1)	0.712	α (Lu-O1)	0.863
α (Ca-O2)	0.844	α (Lu-O2)	0.875
α (Ca-O3)	0.689	α (Lu-O3)	0.833