Defect mechanism of Bi_xSb_{2-x}Te₃ alloy catalyst for

lithium-oxygen battery applications

Songyan Liu,^a Xujie Song,^a Jianhua Zhou,^{*a} Jie Gao,^a Haiqing Qin,^b Xiaoyang Wang,^c Jun-Liang Chen,^a Wenping Liu,^a Xiaoxu Lei ^b and Lei Miao^{*c}

Supporting Information

Table S1. Raw material addition amount for preparing $Bi_{X}Sb_{2-X}Te_{3}$ alloy materials with

different proportions

Sample	BiCl₃/g	SbCl₃/g	Te/g
Bi ₂ Te ₃	1.2615		0.76637
$Bi_{0.7}Sb_{1.3}Te_3$	0.44153	0.59331	0.76637
$Bi_{0.6}Sb_{1.4}Te_3$	0.37846	0.63895	0.76637
$Bi_{0.5}Sb_{1.5}Te_3$	0.31538	0.68459	0.76637
Sb ₂ Te ₃		0.91278	0.76637

Sample	Θ	FWHM	D/nm
Bi ₂ Te ₃ -(0 1 5)	13.83319	0.19524	43.90842
Bi ₂ Te ₃ -(1 0 10)	18.95934	0.39534	22.25786
Bi _{0.7} Sb _{1.3} Te ₃ -(0 1 5)	14.01864	0.36757	23.34078
Bi _{0.7} Sb _{1.3} Te ₃ -(1 0 10)	19.06364	0.39922	22.06014
Bi _{0.6} Sb _{1.4} Te ₃ -(0 1 5)	14.08573	0.49585	17.30742
Bi _{0.6} Sb _{1.4} Te ₃ -(1 0 10)	19.13627	0.44761	19.68391
Bi _{0.5} Sb _{1.5} Te ₃ -(0 1 5)	14.08915	0.34216	25.08187
Bi _{0.5} Sb _{1.5} Te ₃ -(1 0 10)	19.12763	0.36270	24.29075
Sb ₂ Te ₃ -(0 1 5)	14.21007	0.16829	51.02268
Sb ₂ Te ₃ -(1 0 10)	19.23834	0.21133	41.71760

Table S2. Grain size of $Bi_XSb_{2-X}Te_3$ alloy material

Sample	Carrier concentration $10^{25} m^{-3}$	Carrier mobility cm ² V ⁻¹ s ⁻¹
Bi ₂ Te ₃	1.48	11.3
Bi _{0.7} Sb _{1.3} Te ₃	1.52	12.8
$Bi_{0.6}Sb_{1.4}Te_3$	1.75	18.1
Bi _{0.5} Sb _{1.5} Te ₃	1.62	29.1
Sb_2Te_3	1.60	65.8

Table S3. Carrier concentration, the carrier mobility of ${\rm Bi}_X {\rm Sb}_{2\cdot X} {\rm Te}_3$ alloy material at 300 K

Sample	S _{BET} m ² /g	Pore volume cm³/g	Average pore size nm
Bi ₂ Te ₃	3.3860	0.035886	42.39241
$Bi_{0.7}Sb_{1.3}Te_3$	4.9389	0.039553	32.03414
$Bi_{0.6}Sb_{1.4}Te_3$	6.5309	0.049508	30.32241
$Bi_{0.5}Sb_{1.5}Te_3$	3.1827	0.017506	22.00170
Sb ₂ Te ₃	2.8324	0.013884	19.60655

Table S4. Sample specific surface area, pore volume, and average pore size

Fig. S1. Schematic cell structure of Bi₂Te₃

Fig. S2. Schematic cell structure of Bi_xSb_{2-x}Te₃

6

7

Fig. S3. Schematic cell structure of Sb₂Te₃

Fig. S4. Initial charge/discharge curves of Bi2Te3 alloy material under different current

densities

The charge-discharge specific capacities of Bi_2Te_3 cathodes at 200, 300, 500, and 800 mA·g⁻¹ current densities were demonstrated, in order, 12851.64/13623.08mAh·g⁻¹, 11283.76/11964.37 mAh·g⁻¹, 9360.08/17020.05 mAh·g⁻¹ and 6087.79/10537.57 mAh·g⁻¹, and the initial Coulombic efficiencies were 94.34%, 94.31%, 54.99% and 57.77%, in that order.

Fig. S5. Charge-discharge termination voltage comparison curves for Bi_2Te_3 cathode at current densities of 200, 300, 500, and 800 mA·g⁻¹ and a limited capacity of 600 mAh·g⁻¹

The results showed that the Bi_2Te_3 cathode at 200, 300, 500, and 800 mA·g⁻¹ current densities and 600 mAh·g⁻¹ fixed cutoff capacity had 154, 134, 94, and 61 cycles in that order.

Fig. S6. Initial charge/discharge curves of Bi_{0.7}Sb_{1.3}Te₃ alloy material under different current densities

The charge-discharge specific capacities of $Bi_{0.7}Sb_{1.3}Te_3$ cathodes at 200, 300, 500, and 800mA·g⁻¹ current densities were demonstrated, in order, 15257.76/15941.22 mAh·g⁻¹, 15073.39/15679.30 mAh·g⁻¹, 12527.39/13432.57 mAh·g⁻¹ and 6032.02/10701.03 mAh·g⁻¹, and the initial Coulombic efficiencies were 95.71%, 96.14%, 93.26% and 56.37%, in that order.

Fig. S7. Charge-discharge termination voltage comparison curves for $Bi_{0.7}Sb_{1.3}Te_3$ cathode at current densities of 200, 300, 500, and 800 mA·g⁻¹ and a limited capacity of 600 mAh·g⁻¹

The results showed that the $Bi_{0.7}Sb_{1.3}Te_3$ cathode at 200, 300, 500, and 800 mA·g⁻¹ current densities and 600 mAh·g⁻¹ fixed cutoff capacity had 164, 169,164 and 135 cycles in that order.

Fig. S8. Initial charge/discharge curves of Bi_{0.5}Sb_{1.5}Te₃ alloy material under different current densities

The charge-discharge specific capacities of $Bi_{0.5}Sb_{1.5}Te_3$ cathodes at 200, 300, 500, and 800 mA·g⁻¹ current densities were demonstrated, in order, 16967.82/17464.59mAh·g⁻¹, 13900.31/16109.27 mAh·g⁻¹, 11460.49/13459.38 mAh·g⁻¹ and 7427.96/9816.18 mAh·g⁻¹, and the initial Coulombic efficiencies were 97.16%, 86.29%, 85.15% and 75.67%, in that order.

Fig. S9. Charge-discharge termination voltage comparison curves for $Bi_{0.5}Sb_{1.5}Te_3$ cathode at current densities of 200, 300, 500, and 800 mA·g⁻¹ and a limited capacity of 600 mAh·g⁻¹

The results showed that the $Bi_{0.5}Sb_{1.5}Te_3$ cathode at 200, 300, 500, and 800 mA·g $^{-1}$ current densities and 600 mAh·g $^{-1}$ fixed cutoff capacity had 197, 104, 156 and 119 cycles in that order.

Fig. S10. Initial charge/discharge curves of Sb_2Te_3 alloy material under different current

densities

The charge-discharge specific capacities of Sb_2Te_3 cathodes at 200, 300, 500, and 800 mA·g⁻¹ current densities were demonstrated, in order, 15381.92/16191.97 mAh·g⁻¹, 9542.12/11005.75 mAh·g⁻¹, 7513.45/11663.70 mAh·g⁻¹ and 4077.75/10300.10 mAh·g⁻¹, and the initial Coulombic efficiencies were 95%, 86.70%, 64.42% and 39.59%, in that order.

Fig. S11. Charge-discharge termination voltage comparison curves for Sb_2Te_3 cathode at current densi-ties of 200, 300, 500, and 800 mA·g⁻¹ and a limited capacity of 600 mAh·g⁻¹

The results showed that the Sb_2Te_3 cathode at 200, 300, 500, and 800 mA·g⁻¹ current densities and 600 mAh·g⁻¹ fixed cutoff capacity had 177, 145, 150, and 66 cycles in that order.

Fig. S12. Initial charge/discharge curves of KB alloy material under different current densities

The charge-discharge specific capacities of KB cathodes at 200, 300, 500, and 800 mA·g⁻¹ current densities were demonstrated, in order, 7006.95/8794.92 mAh·g⁻¹,4834.88/5015.05 mAh·g⁻¹, 4046.15/7681.45 mAh·g⁻¹ and 1962.25/4205.83 mAh·g⁻¹, and the initial Coulombic efficiencies were 79.67%, 96.41%, 52.67% and 46.66%, in that order.

Fig. S13. Charge-discharge termination voltage comparison curves for KB cathode at current densi-ties of 200, 300, 500, and 800 mA·g⁻¹ and a limited capacity of 600 mAh·g⁻¹

The results showed that the KB cathode at 200, 300, 500, and 800 mA \cdot g⁻¹ current densities and 600 mAh \cdot g⁻¹ fixed cutoff capacity had 66, 66, 60, and 16 cycles in that order.

Fig. S14. Nyquist plots of Bi_2Te_3 electrodes at different stages.

Fig. S15. Nyquist plots of Sb_2Te_3 electrodes at different stages.