Supporting Information

Spin Dynamic of Tri-addition Endohedral Nitrogen Fullerene with

Transversal Chemical Functionalization

Cong-Hui Wu, Yu-jin Wu, Jia-Yue Yuan, Zhi-Rong Wu, Qi Xiong, Li-Nan Zhou, Song Gao, Shen Zhou, Shang-Da Jiang

Supporting Information

Contents

- SI 1: Mass Spectra for products 3 and 5
- SI 2: T_1 measurement of 3 and 5 powder at 3456 G
- SI 3: T_m measurement of 3 and 5
- SI 4: $T_{\rm m}$ measurement of 3 and 5 with CPMG dynamic decoupling
- SI 5: Rabi oscillations of 3 and 5

SI 1: Mass Spectra for products 3 and 5

Figure S1 MALDI-TOF-MS of a) 3, b) 5 (Trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2propenylidene] malononitrile and negative mode)

Figure S2 (a-j) T_1 data (black point) measured at different temperatures at 3456 G and individual exponential fitting curves (red line) for 3 powder. At higher temperatures, the signal becomes weaker, necessitating more repetitions to obtain reliable results. The shots per point for Figure S2 h and i (200 and 250 K) are twice as many as those used for Figure S2 a–g (from 10 to 150 K), and the shots per point for Figure S2 j (298 K) are four times greater than those used for Figure S2 a–g.

Figure S3 T_1 data measured at 10 K and 298K at 3456 G for 5 powder.

<i>T /</i> K	$3 - T_1 / ms$
10	3.005
20	2.19
40	1.042
60	0.787
80	0.51
100	0.322
150	0.202
200	0.132
250	0.06
298	0.04

Table S1. T_1 data between 10-250 K of 3 powder at 3456 G.

Table S2. T_1 data of 5 powder at 10 K and 3456 G.		
T/K	T / K 5- T_1 / ms	
10	2.847	
298	0.146	

Figure S4 $T_{\rm m}$ data (black point) measured at different temperatures at 3456 G and individual exponential fitting curves (red line) for 3 powder. The shots per point for Figure S4 h (200 K) are twice as many as those used for Figure S4 a–g (from 10 to 150 K).

Figure S5 (a) $T_{\rm m}$ data (point) measured in different fields at 298 K and individual exponential fitting curves (line) for 3 powder. (b) $T_{\rm m}$ data (point) measured in different solutions at 10 K at 3456 G and individual exponential fitting curves (line) for 3.

<i>T</i> / K	$3-T_{\rm m}/\mu{ m s}$
10	3.852
20	3.399
40	3.06
60	2.903
80	3.504
100	3.968
150	3.639
200	4.01
298	2.282

Table S3. $T_{\rm m}$ data between 10-298 K of 3 powder at 3456 G.

Table S4. $T_{\rm m}$ data of 3 in different fields at 298 K.		
Field	$3-T_{\rm m}/\mu s$	
3444	2.456	
3450	2.311	
3456	2.282	
3460	1.666	

Table S5. $T_{\rm m}$ data of 3 in different solutions at 10 K and 3456 G.

Solvent	$3-T_{\rm m}/\mu s$	
<i>d</i> ₈ -toluene	11.156	
CS ₂	8.688	
CDCl ₃	3.469	

Figure S6 $T_{\rm m}$ data (point) measured at 10 K and 298 K at 3456 G and individual exponential fitting curves (line) for 5 powder.

<i>T /</i> K	$5-T_{\rm m}/\mu s$
10	3.448
298	2.444

Table S5. $T_{\rm m}$ data of 5 powder at 10K and 298 K at 3456 G.

SI 4: $T_{\rm m}$ measurement of 3 and 5 powder with CPMG dynamic decoupling

Figure S7 CPMG data (point) measured at 10 K at 3456 G and individual exponential fitting curves (line) for (a) 3 powder. (b) 5 powder.

Inversion pulse number	3- <i>T</i> _m /µs	5- <i>T</i> _m /μs
1	3.487	3.5
2	5.034	5.318
4	6.732	6.49

Table S6. CPMG data of 3 and 5 powder at 10 K and 3456 G.

SI 5: Rabi oscillations of 3 and 5

Figure S8 (a) Rabi oscillations of the 3 powder measured at different fields at 298 K, 18 dB. (b) FFT of Rabi oscillations measured at different fields at 298 K, 18 dB.

Figure S9 Rabi oscillations of (a) 3 powder, (b) 3 in d₈-toluene, (c) 3 in CS₂ and (d) 3 in CDCl₃ frozen solutions at 10 K and 3456 G for different pulse powers. The Rabi frequencies f_{Rabi} exhibit a linear relationship with the microwave B₁ field.

Figure S10 Rabi oscillations of 5 powder at 10 K and 3456 G for different pulse powers. The Rabi frequencies f_{Rabi} exhibit a linear relationship with the microwave B₁ field.