Supporting Information

Water-triggered optical response in Tb³⁺-doped CaSnF₆ crystal for high-security anti-counterfeiting application

Dongxun Chen^{†a}, Fei Xie^{†a,b}, Xulong Lv^a, Yi Zhang^a, Yanjie Liang^{*a}

^a Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials,

Ministry of Education, Shandong University, Jinan 250061, China.

^b Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China.

*Corresponding authors: Yanjie Liang E-mail: yanjie.liang@sdu.edu.cn

Experimental

*Materials and synthesis of CaSnF*₆:*Tb*³⁺: CaCl₂ (99.9%), SnCl₄·5H₂O (99.995%), TbCl₃·6H₂O (99.99%), and NaOH (97%) were purchased from Aladdin, and HF acid (40 wt%) was purchased from Sinopharm Chemical. All the chemicals were used as received without further purification. The CaSnF₆:10%Tb³⁺ was prepared via the fluorination of CaSn(OH)₆:Tb³⁺ precursor. First, the CaSn(OH)₆:Tb³⁺ precursor was synthesized by the coprecipitation method using 2.25 mmol CaCl₂, 2.5 mmol SnCl₄·5H₂O, 0.25 mmol TbCl₃·6H₂O and excess sodium hydroxide (10 M, 3 mL). Then, CaSn(OH)₆:Tb³⁺ was collected by centrifugation and added to 34 mL anhydrous ethanol with an appropriate amount of HF acid incorporated during the stirring process. Finally, the mixture solution was put into a 50 mL Teflon-lined autoclave and heated in a furnace at 120°C for 12 h. The CaSnF₆:10%Tb³⁺ was successfully collected after cooling, centrifugation, drying, and grinding. Additionally, the CaSnF₆ samples with different doping concentrations of Tb³⁺ could be synthesized using the same method but changing the CaCl₂ and TbCl₃·6H₂O amount. The samples were stored in a desiccator for subsequent testing.

*Preparation of intermediate phase between CaSnF*⁶ *and CaF*² *phase:* The synthesized CaSnF⁶ and DI water were mixed in a centrifuge tube at a certain mass ratio. Then, the mixture was subjected to ultrasonic oscillation to achieve complete and uniform dispersion. To quench the state of the samples at various reaction times, the samples were promptly immersed in liquid nitrogen for 30 s until complete freezing occurred. Then, the hygroscopic mixture was subjected to freeze-drying in a vacuum freeze-dryer (LGJ-S20, Beijing Sihuan Qihang Technology Co., LTD.) to remove water. Finally, samples with different reaction times were obtained. Additionally, the aforementioned method can also be utilized to obtain intermediate-phase samples with varying sample/water ratios. The procedure is illustrated in Figure S1.

Fabrication of the specific logo patterns: The fabrication of these patterned templates is based on computer numerical control (CNC) machining technology. Firstly, a graphic

template with 1 mm depth was fabricated by standard CNC machine tools (Annoytools, CNC3018Pro Max) on the acrylonitrile butadiene styrene (ABS) plastic substrates. Then, the CaSnF6:Tb³⁺, CaF2:Tb³⁺, and SiO2 ethanol solutions were separately injected into the graphic templates and dried in a drying oven at 70°C for 1 h. The above graphics were placed in a humidity chamber at 95% humidity for about 30 min and then transferred to a drying oven for drying. A humidity chamber and a drying oven were used for water content control.

Characterization: The crystal structure and phase composition of the fluoride materials were measured by a powder X-ray diffractometer (DMAX-2500PC, Rigaku) with Cu K α 1 radiation ($\lambda = 1.5406$ Å) and a scanning speed of 10 °/min. The micro/ nano-structure was analyzed using a field-emission high-temperature scanning electron microscope (SEM, JSM-7800F, JEOL) and a high-resolution transmission electron microscope (HR-TEM, JEM-2100, JEOL). The excitation and emission spectra were all tested by the Edinburgh FLS1000 fluorescence spectrometer. PL photographs under 365 nm UV light were taken by a digital camera (Canon, EOS 800D with EF-S 18-55 mm) in a manual mode (exposure time: 1 s, aperture: f/4, and sensitivity: ISO 200).

Figure S1. Schematic of the preparation of mesophase.

Figure S2. a) XRD patterns and b) SEM images of CaSnF6:10%Tb³⁺ with varying Ca-F ratios.

Figure S3. a) SEM image, b) SEM mapping, c) TEM image, d, e) HRTEM images of CaSnF₆:10%Tb³⁺ when the Ca-F ratio is at 1:9. f) TEM-mapping images of CaSnF₆:10%Tb³⁺. Scale bar: 1 μ m.

Figure S4. Schematic of the preparation of sample S, P, and C.

Figure S5. TEM mapping images of a) sample P ($CaF_2:Tb^{3+}$), and b) sample S (supernatant fluid).

Figure S6. a) XRD patterns and b) SEM images of the $CaSnF_6:10\%Tb^{3+}$ treated with varying water content.

Figure S7. PLE and PL spectra of CaSnF6:10%Tb³⁺.

Figure S8. Simplified energy level diagram of Tb³⁺ ions in the fluoride host lattices.

Figure S9. PL spectra of $CaSnF_6:10\%Tb^{3+}$ with varying Ca-F ratio.

Figure S10. a) XRD patterns, b) PL emission spectra, and c) SEM images of $CaSnF_6:x\%Tb^{3+}$ (x = 1, 5, 10, 20, 25).

Figure S11. a) PLE and PL spectra of $CaF_2:Tb^{3+}$. b) The reflectance spectrum of $CaSnF_6:Tb^{3+}$ and $CaF_2:Tb^{3+}$.

Figure S12. a) PL spectra of $CaSnF_6:10Tb^{3+}$ and $CaSnF_6:10Tb^{3+}-H_2O$. b) PL spectra of $CaSnF_6:10Tb^{3+}$ treated with different water content.

Figure S13 a) XRD patterns and b) PL emission spectra of CaSnF₆:10%Tb stored in air with 10% humidity for 0, 3, and 7 days, and in a desiccator for 240 days.

Figure S14. a) XRD patterns of CaSnF₆:x%Ce³⁺,10%Tb³⁺ (x = 1, 5, 10, 15, 20, 30). b) PLE emission spectrum of CaSnF₆:15%Ce³⁺,10%Tb³⁺. c) PL emission spectra and d) SEM images of CaSnF₆:x%Ce³⁺,10%Tb³⁺ (x = 1, 5, 10, 15, 20, 30).

Figure S15. a) PL spectra of CaSnF₆:10%Tb³⁺ and CaSnF₆:15%Ce³⁺,10%Tb³⁺. b) PLE spectra of CaSnF₆:15%Ce³⁺,10%Tb³⁺, and the one treated with water. RL spectra of c) Tb³⁺-doped CaF₂, CaSnF₆-H₂O, CaSnF₆ and supernatant, and d) Ce³⁺,Tb³⁺ co-doped CaSnF₆-H₂O, CaSnF₆.