Disentangling the Structure, Optical, and Photoluminescence Emissions of NiW1–xMoxO4 (x = 25, 50, and 75%) Solid Solutions: Experimental and DFT Study[†]

Amanda Fernandes Gouveia,*a Marcelo Assis,^{a,b} Lara Kelly Ribeiro,^{a,c} Eduardo de Oliveira

Gomes,^a Marcio Daldin Teodoro,^d Elson Longo,^c and Juan Andrés^{*a}

^aDepartment of Physical and Analytical Chemistry, University Jaume I, Castelló 12071, Spain.

^bDepartment of Biosciences, Institute of Health and Society, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil,

°CDMF-UFSCar, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil.

^dPhysics Department, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil.

*Corresponding author: gouveiad@uji.es, andres@qfa.uji.es

Supporting Information

Elemental analysis – XRF spectrometry

Table SI-1. Elemental analysis of W and Mo atoms in the samples obtained by XRF spectrometry.

Elements	Nominal				Experimental					
	NW	NW75	NW50	NW25	NM	NW	NW75	NW50	NW25	NM
W	100.0	75.0	50.0	25.0	0.0	100.0	77.6	47.5	22.6	0.0
Мо	0.0	25.0	50.0	75.0	100.0	0.0	22.4	52.5	77.4	100.0

Bond distances and Jahn-Teller distortion

In **Figure SI-1**, the NW structure and its constituent [NiO₆] and [WO₆] clusters are illustrated, along with the substitution sites in the NW75, NW50, and NW25 solid solutions that lead to the formation of [MoO₆] clusters. The bond distances and Jahn-Teller distortion $(^{\sigma}_{JT})$ values are reported in **Table SI-3**.

Figure SI-1. Schematic illustration of the NW structure, showing the [NiO₆] and [WO₆] clusters, and the substitution site where W is replaced by Mo in the solid solutions.

 Table SI-2. Bond distances (Å) of Ni–O, W–O, and Mo–O in each cluster within the NW structure and the solid solutions.

Bond	NW	NW75	NW50	NW25
Ni1-014	2.0089	2.0152	2.0143	2.0307
Nil – O15	2.0089	2.0255	2.0063	2.0138
Ni1 – O22	2.0402	2.042	2.0504	2.0528
Ni1 – O23	2.0402	2.0425	2.0187	2.0196
Ni1-017	2.1064	2.0811	2.0942	2.0862
Ni1 – O20	2.1064	2.0983	2.0908	2.0668
σ _{JT}	0.042	0.031	0.037	0.026
Ni2-016	2.0089	2.0154	2.0149	2.0318
Ni2 – O13	2.0089	2.0258	2.0069	2.0133
Ni2 – O24	2.0402	2.0418	2.0503	2.0533
Ni2 – O21	2.0402	2.0426	2.0186	2.0189
Ni2-019	2.1064	2.0811	2.0938	2.0861
Ni2-018	2.1064	2.0980	2.0898	2.0666
σ _{JT}	0.042	0.031	0.037	0.026
Ni3 – O9	2.0089	1.9883	2.0069	2.0057

Ni3 – O12	2.0089	2.0075	2.0149	1.9946
Ni3 – O17	2.0402	2.0171	2.0186	2.0252
Ni3 – O20	2.0402	2.0485	2.0503	2.0252
Ni3 – O22	2.1064	2.0971	2.0898	2.1060
Ni3 – O23	2.1064	2.1233	2.0938	2.0859
σ _{JT}	0.042	0.051	0.037	0.044
Ni4 – O10	2.0089	2.0074	2.0143	1.9942
Ni4 – O11	2.0089	1.9883	2.0063	2.0061
Ni4 – O18	2.0402	2.0483	2.0504	2.0247
Ni4 – O19	2.0402	2.0171	2.0187	2.0257
Ni4 – O21	2.1064	2.1234	2.0942	2.0859
Ni4 – O24	2.1064	2.0971	2.0908	2.1062
σ _{JT}	0.042	0.051	0.037	0.044
W/Mo5-O17	1.7458	1.8108	1.8019	1.8023
W/Mo5-O19	1.7458	1.8109	1.8020	1.8017
W/Mo5-O11	1.8349	1.8751	1.8951	1.8950
W/Mo5 – O9	1.8349	1.8752	1.8950	1.8973
W/Mo5-O13	2.3231	2.2143	2.1924	2.1891
W/Mo5-O15	2.3231	2.2143	2.1924	2.1937
σ_{JT}	0.287	0.199	0.180	0.179
W/Mo6 – O18	1.7458	1.7456	1.7460	1.8113
W/Mo6 – O20	1.7458	1.7454	1.7456	1.8106
W/Mo6 – O10	1.8349	1.8366	1.8400	1.8802
W/Mo6 – O12	1.8349	1.8366	1.8395	1.8783
W/Mo6 - O14	2.3231	2.3189	2.3098	2.2019
W/Mo6 – O16	2.3231	2.3191	2.3107	2.208
σ_{JT}	0.287	0.283	0.277	0.192
W/Mo7 – O21	1.7458	1.7334	1.8019	1.8023
W/Mo7 – O23	1.7458	1.7334	1.8020	1.8019
W/Mo7 – O13	1.8349	1.8612	1.8950	1.8993
W/Mo7 – O15	1.8349	1.8613	1.8951	1.8970
W/Mo7 – O9	2.3231	2.2881	2.1924	2.1821
W/Mo7 – O11	2.3231	2.2883	2.1924	2.1872
σ _{JT}	0.287	0.257	0.180	0.174
W8-O22	1.7458	1.7462	1.7460	1.7337
W8 - O24	1.7458	1.7461	1.7456	1.7330
W8-014	1.8349	1.8385	1.8400	1.8676
W8-016	1.8349	1.8382	1.8395	1.8642
W8-010	2.3231	2.3117	2.3098	2.2758
W8-012	2.3231	2.3118	2.3107	2.2813

$\sigma_{\rm JT}$	0.287	0.283	0.277	0.250

Density of States – DOS

An analysis of the partial DOS reveals that the orbitals at the VB and CB are nondegenerated with different contribution of the d orbitals of the transition metals and p orbitals from O atoms. For the NW model (**Figure SI-2**), the VB is formed by a homogeneous contribution of Ni ³d orbitals, and O ²p orbitals. However, the CB is mainly for by Ni ³d_{xz} + ³d_{yz} + ³d_{xy} orbitals and mainly by the W e_g (${}^{5d}_{z^2} + {}^{5d}_{x^2} - y^2$) orbitals. At the top of the VB in the α channel at NW involves the hybridization of Ni ³d_{xz} + ³d_{xy} orbitals and O ²p_z orbitals, whereas the bottom of the CB is formed mainly by empty W ${}^{5d}_{z^2} + {}^{5d}_{xz} + {}^{5d}_{x^2} - y^2$ orbitals. For the β channel, the VB is formed by Ni ³d_{x^2} - y² orbitals hybridized with O ²p_z orbitals, while the CB is composed of the hybridization between the W ⁵d_z² + ⁵d_{xz} orbitals with Ni ³d_{xz} + ³d_{xy} orbitals.

For the NM in **Figure SI-3**, the VB is formed also by contribution of Ni ^{3d} orbitals, and O ²*p* orbitals, while the CB is mainly formed by Ni ^{3d}_{xy} orbitals and mainly by a homogenous contribution of the W e_g $\binom{5d_{z^2} + 5d_{x^2} - y^2}{x^2 - y^2}$ and W $5d_{xz} + 5d_{yz}$ orbitals. The top of the VB is composed by only Ni ^{3d}_{xy} and ^{3d}_{x^2 - y^2} orbitals in the α and β channels, respectively. Concerning the bottom of the CB, the α channel is composed by empty Mo $4d_{z^2} + 4d_{xz} + 4d_{x^2 - y^2}$ orbitals, while at the β channel, there is a hybridization between the Mo $\frac{5d_{z^2} + 5d_{xz}}{2}$ orbitals with Ni ^{3d}_{xz} orbitals.

Figure SI-2. Partial DOS projected on (a) Ni, (b) W, and (c) O orbitals at the pure NW.

Figure SI-3. Partial DOS projected on (a) Ni, (b) Mo, and (c) O orbitals at the pure NM.

Figure SI-4. Partial DOS projected on (a) Ni, (b) O, (c) W, and (d) Mo orbitals at the NW75 solid solutions.

Figure SI-5. Partial DOS projected on (a) Ni, (b) O, (c) W, and (d) Mo orbitals at the NW50 solid solutions.

Figure SI-6. Partial DOS projected on (a) Ni, (b) O, (c) W, and (d) Mo orbitals at the NW25 solid solutions.