Transparent photochromic Fe-doped W₁₈O₄₉ films with ultrahigh

solar energy modulation for smart windows

Yongkang Zhu^{1,a}, Bin Li^{1,a,b}, Chenxu Li^a, Shouqin Tian^{a,*}

^a State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China

^b Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077 China

* Corresponding author: Shouqin Tian (E-mail: tiansq@whut.edu.cn)

Fig. S1 XRD patterns of Fe/W-0.02, Fe/W-0.04, Fe/W-0.06 and Fe/W-0.08 nanoparticles.

Fig. S2 XRD patterns of Fe/W-0.06 and Fe/W-0 nanoparticles.

Fig. S3 Survey XPS spectra of Fe/W-0 and Fe/W-0.06 nanoparticles.

Fig. S4 The photographs of Fe/W-0~0.08 films from bleached to colored to bleached state.

Fig. S5 SEM image (a) and partial enlargement (b) of Fe/W-0 particles. SEM image (c) and partial enlargement (d) of Fe/W-0.06 particles.

Fig. S6 (a) UV-Vis absorption spectra of Fe/W-0 and Fe/W-0.06 particles, (b) the corresponding optical band gap. The optical bandgap *E*g was derived from equation $(\alpha hv)^m = A(hv - E_g)$, where the exponent *m* here was identified as 1/2 for indirect-allowed optical transition. By linear fitting the plot of $(\alpha hv)^{1/2}$ depend on hv, E_g was obtained from the intercept of fitted line with x axis.

Fig. S7 Photographs of Fe/W-0.06 bilayer film during the bleaching process at 15 °C in the dark.

Fig. S8 Transmittance spectra of Fe/W-0.06 bilayer film during the bleaching process at 15 °C in the dark.

Fig. S9 (a) Photograph of the experimental set up. The pressure in the tube furnace (b) before and (c) after evacuation (the coloring and bleaching process were taken under this condition).

Fig. S10 Photographs of Fe/W-0.06 bilayer films: (a) totally bleached, (b) totally colored and (c) the colored film after leaving in a vacuum tube furnace at room temperature in the dark for 8 h.

Fig. S11 Transmittance spectra of Fe/W-0.06 bilayer film in the totally bleached and colored state, and the totally colored film after leaving in a vacuum tube furnace at room temperature in the dark for 8 h.

Fe/W (at.%)	$T_{ m sol}$ (%)		$T_{\rm lum}$ (%)		
	Bleached	Colored	Bleached	Colored	$\Delta T_{\rm sol}(\%)$
	state	state	state	state	
0	83.0	45.5	87.3	67.8	37.5
2	84.4	35.6	88.0	46.7	48.8
4	85.1	41.1	87.5	57.0	44.0
6	84.3	42.6	87.2	58.3	41.8
8	84.9	53.6	87.2	69.6	31.3
6 (bilayer)	79.9	19.7	82.9	34.9	60.2

Table S1 Optical properties of films with different doping Fe³⁺ concentration.

Table S2 The transmittance of films with different doping Fe^{3+} concentrations at 1200 nm during the bleaching process.

Fe/W (at.%)	Transmittance (%)						
	Colored	B-	B-	B-	B-	Initial	
	state	5min	10min	20min	30min	state	
0	17.95	42.46	50.43	62.26	67.09	81.41	
2	20.83	48.85	60.29	67.80	71.43	82.81	
4	20.13	66.07	74.70	79.98	80.44	85.49	
6	21.74	75.39	81.51	84.16	84.88	85.56	
8	30.59	82.25	83.89	84.76	84.85	86.04	

Table S3 Comparison between the Fe/W-0.06 bilayer film and some best reported photochromic materials in terms of photochromic performance.

Materials	Irradiation	Coloring Bleaching			Pof
	conditions	process	process		
WO ₃ /PVA	365 nm, 8 W	5 min	Air/dark, 3	~30%	1
			d		1
WO _{3-x} /Ta ₂ O ₅	265 mm 0 W	10 s	_	28% at	2
	365 nm, 8 W			1200 nm	
Zn/W-0.04	365 nm, 5 W	<1 min	_	47.18%	3
WO ₃ , TiO ₂	15 min,		air/dark,	$\frac{110}{(T)}$	4
and SiO ₂	sunlight,	-	$\sim 2 \text{ days}$		•
Cu-WO ₃	90 min,		air/dark,		5
	365 nm	-	~3h	-	
Fe/W-0.06	365 nm, 5 W	<1 min	<20 min	600/	This
			at 80 °C	00%	work

References

- 1 S. Songara, V. Gupta, M. Kumar Patra, J. Singh, L. Saini, G. Siddaramana Gowd, S. Raj Vadera and N. Kumar, *J. Phys. Chem. Solids*, 2012, **73**, 851–857.
- 2M. Bourdin, G. Salek, A. Fargues, S. Messaddeq, Y. Messaddeq, T. Cardinal and M. Gaudon, *J. Mater. Chem. C*, 2020, **8**, 9410–9421.
- 3T. Ma, B. Li, Y. Zhu, S. Wu, X. Zhao, X. Chu and S. Tian, *J. Mater. Chem. C*, 2024, **12**, 10218–10225.
- 4M. Hočevar and U. Opara Krašovec, Sol. Energy Mater. Sol. Cells, 2018, 186, 111–114.
- 5Y. Badour, S. Danto, C. Labrugère, M. Duttine and M. Gaudon, J. Electron. Mater., 2022, **51**, 1555–1567.