Supporting Information

Enhancement of thermoelectric performance of SnTe via Mn solubility control

Wenxuan Wang¹, Dongyi Shen¹, Haiqi Li¹, Kejia Liu¹, Chen Chen^{2*}, and Yue Chen^{1*}

¹ Department of Mechanical Engineering, The University of Hong Kong, Pokfulam

Road, Hong Kong SAR, China. E-mail: yuechen@hku.hk

² Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and

Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University,

Dongguan 523000, China. E-mail: ccmldn@gbu.edu.cn

Nominal composition	Density (g/cm ³)	Relative density (%)
Sn _{1.03} Te	6.276	97.2
Sn _{1.03} Te +3% AgBiSe ₂	6.393	99.0
$Sn_{0.93}Ge_{0.1}Te +3\% AgBiSe_2$	6.276	97.2
$Sn_{0.93}Mn_{0.1}Te +3\% AgBiSe_2$	6.225	96.4
$Sn_{0.83}Ge_{0.1}Mn_{0.1}Te + 3\% AgBiSe_2$	6.188	95.8
$Sn_{0.73}Ge_{0.1}Mn_{0.2}Te +3\% AgBiSe_2$	6.210	96.1

Table S1 Densities of $Sn_{1.03}$ Te and Ge, Mn and AgBiSe₂-alloyed $Sn_{1.03}$ Te.

Figure S1 Scanning electron microscopy (SEM) image and the corresponding energy-dispersive Xray spectroscopy (EDS) mapping of Sn_{0.93}Mn_{0.1}Te+3% AgBiSe₂.

Figure S2 The temperature-dependent (a) electrical resistivity, (b) Seebeck coefficient, and (c) power factor of $Sn_{0.73}Ge_{0.1}Mn_{0.2}Te +3\%$ AgBiSe₂ during a heating-cooling cycle.