SUPPORTING INFORMATION

Flexible PVDF-NCMF Nanocomposites: A Synergistic Approach to Enhanced Magneto-Dielectric Properties and Sensing Performance.

K. S. Deepa^a, S. Premkumar^{b,c}, Suwarna Datar^d, V.L. Mathe^{c*}, C. V. Ramana^{e,f,*} and Sunit B. Rane^{a*}

^aAdditive Manufacturing & Advanced Materials-Electronics & Energy (AM2E2), Centre for Materials for Electronics Technology, Off. Pashan Road, Pune 411008, India.

^bArmament Research and Development Establishment, Pune, 411021, India.

^cDepartment of Physics, Savitribai Phule Pune University, Pune 411007, India.

^dDefence Institute of Advanced Technology (DIAT), Pune, 411025, India.

^eCenter for Advanced Materials Research (CMR), University of Texas at El Paso, El Paso, Texas 79968, USA

^fDepartment of Aerospace and Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968, USA

PVDF-NCMF Composites - Williamson Hall Plots & Analyses:

The Williamson-Hall (W-H) methodology considers strain-induced XRD peak broadening. This approach estimates crystal size based on intrinsic strain. Nanocrystallite size and microstrain induce physical line broadening of the X-ray diffraction peak can be expressed as:

$$\beta_{hkl} = \beta_D + \beta_{\varepsilon}$$
 ------ (1)

where β_D and β_{ϵ} are the size and strain induced broadening in the peaks respectively. β_{hkl} is the Full Width at Half Maximum (FWHM) of the highest peak (in radians) and calculated using the renowned Debye-Scherrer's formula as given below.

$$D = \frac{K\lambda}{\beta_{hkl}COS\theta}$$
(2)

Here D is the crystallite size, K is the Scherrer constant or shape factor, λ =1.540598 Å is the wavelength of the x-rays and θ is Bragg's angle. β_{ϵ} the strain induced broadening of the XRD pattern can be calculated using the below mentioned equation,

$$\beta_{\varepsilon} = 4\varepsilon \cdot \tan\theta - (3)$$

where ε is the microstrain. Under the assumption that both particle size and strain contribute independently to line broadening and follow a Cauchy like profile, the observed phenomenon of line broadening in different planes can be well described by the sum of equations (2) and (3) as follows.

$$\beta_{hkl} = \frac{K\lambda}{DCOS\theta} + 4\varepsilon \cdot \tan\theta_{----(4)}$$

After rearranging Eq. 4 can be written as

$$\beta_{hkl}\cos\theta = \frac{K\lambda}{D} + \varepsilon.4\sin\theta$$
----(5)

The eq. 5 is known as W-H equation under the assumption that uniform strain is exerted along all the axis of the crystal. As eq. 5 is of the form of straight line, by plotting a graph between $\beta_{hkl} \cos\theta$ along y-axis and $4\sin\theta$ along x-axis of different volume percentage of NCMF, as

shown in Figure S1. The microstrain ε can be calculated from the slope of the linear graph and the crystallite size from the intercept. The values are tabulated in Table S1.

Fig. S1. Williamson-Hall plots of PVDF-NCMF nanocomposites. The data shown are for samples with different volume percentage of NCMF.

Table S1. The strain and average crystallite size of PVDF-NCMF nanocomposites determined from W-H plots.

Volume percentage of NCMF	Strain	Crystallite size (nm)
10	0.01252	16.83912
20	-0.00247	13.22524
30	-0.00208	12.52737
50	0.000124	30.943675

Fig. S2. Raman spectroscopic data of PVDF-NCMF nanocomposites. The data shown are for samples with different volume percentage of NCMF. The peaks identified are as labelled.

Table S2. Raman	modes observed	and their as	ssignment o	of PVDF-NCM	F nanocomposites.
			Song mine ine		i mano e o mpoblicebi

Compound	Bands (cm ⁻¹)	Assigned vibration/ Mode	Phase/Polyhedra
	285	CH ₂ -Twisting	
	485	CF ₂ -Deformation	
	612	CF ₂ -Wagging	α-phase
	410, 795	CH ₂ -Rocking	
PVDF	874	CC- symmetric stretching	
	437	CF ₂ -Rocking	β-phase
	811	CH ₂ -Wagging	γ- phase
	839	CH ₂ -Rocking &	β and γ phase
		CF ₂ -Stretching	
	322	Eg	
NCMF	480	$T_{2g}(2)$	FeO ₆ Octahedra
	571	$T_{2g}(3)$	
	695	Ag	FeO ₄ Tetrahedra

Fig. S3. SEM micrograph of (a) NCMF nano powder, Energy dispersive spectroscopy of NCMF nano powder with elemental maps of (b) Ni Kα1, (c) Co Kα1, (d) Mn Kα1, (e) Fe Kα1and (i) O Kα1.

Element	Weight %	Atomic %
Ni Kal	20.46	10.36
Co Κα1	0.99	0.50
Mn Kal	1.49	0.81
Fe Kal	41.40	22.05
Ο Κα1	35.66	66.28

Table S3. EDS elemental composition of NCMF nano powder