## Supporting information for

## Trap-Controlled Sodalites with High Photochromic Contrast for Decoloration Applications

Jingxuan Zhang <sup>a</sup>, Zetian Yang <sup>b\*</sup>, Hengwei Lin <sup>a</sup>, Dirk Poelman <sup>c</sup>, Henk Vrielinck <sup>d</sup>, and Jiaren Du <sup>a\*</sup>

<sup>a</sup> International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
<sup>b</sup> Aviation Engineering School, Air Force Engineering University, 710038, Xi'an, China
<sup>c</sup> LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, Ghent B-9000, Belgium
<sup>d</sup> Electron Magnetic Resonance Group, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, Ghent B-9000, Belgium

\*Corresponding authors:

Dr. Jiaren Du (jiaren.du@jiangnan.edu.cn)

Dr. Zetian Yang (zetianyang@126.com)



**Figure S1**. (a) XRD patterns of synthesized  $Na_8(AlSiO_4)_6Cl_2$  by microwave-assisted solidstate (MASS) reactions using different precursors. (b) Photographs of synthesized  $Na_8(AlSiO_4)_6Cl_2$  using NaCl,  $Na_2SO_4$ ,  $Na_2CO_3$ ,  $Al_2O_3$  and  $SiO_2$  as precursors under 365 nm illumination (left) and after 254 nm coloring (right). (c) Photographs of synthesized  $Na_8(AlSiO_4)_6Cl_2$  using zeolite A, NaCl and  $Na_2SO_4$  as precursors under 365 nm illumination (left) and after 254 nm coloring (right).



Figure S2. (a) XRD patterns of  $Na_8(AlSiO_4)_6Cl_2$  synthesized by MASS reactions using different power levels. (b) Reflectivity difference of  $Na_8(AlSiO_4)_6Cl_2$  synthesized with different power levels before and after 254 nm illumination. Reflectivity spectra of



Na<sub>8</sub>(AlSiO<sub>4</sub>)<sub>6</sub>Cl<sub>2</sub> synthesized using (c) 400 W, (d) 600 W, and (e) 800 W before and after 254 nm illumination.

Figure S3. Reflectivity spectra of Na<sub>8</sub>(AlSiO<sub>4</sub>)<sub>6</sub>Cl<sub>2-0.3x</sub>S<sub>0.15x</sub> synthesized by MASS reactions before and after 254 nm illumination with (a) x = 0, (b) x = 1, (c) x = 3, (d) x = 4, (e) x = 5, and (f) x = 6.



**Figure S4**. (a) XRD patterns of Na<sub>8</sub>(AlSiO<sub>4</sub>)<sub>6</sub>Cl<sub>1.4</sub>S<sub>0.3</sub> synthesized by different methods. (b) Photographs of Na<sub>8</sub>(AlSiO<sub>4</sub>)<sub>6</sub>Cl<sub>1.4</sub>S<sub>0.3</sub> synthesized by solid-state reactions (SSR) in different conditions before and after 254 nm illumination. (c) Contour plot of the excitation-dependent photoluminescence emission spectra of Na<sub>8</sub>(AlSiO<sub>4</sub>)<sub>6</sub>Cl<sub>1.4</sub>S<sub>0.3</sub> synthesized by SSR in N<sub>2</sub>+H<sub>2</sub> condition. (d) Reflectivity spectra of Na<sub>8</sub>(AlSiO<sub>4</sub>)<sub>6</sub>Cl<sub>1.4</sub>S<sub>0.3</sub> synthesized by SSR in N<sub>2</sub>+H<sub>2</sub> condition before and after 254 nm illumination.



**Figure S5**. Stability of the photochromic sample  $(Na_8(AlSiO_4)_6Cl_{1.4}S_{0.3})$  prepared by SSR method. Photochromic samples were put upon daylight or without daylight (in darkness) for varied durations at room temperature.



**Figure S6**. Stability of the photochromic sample  $(Na_8(AlSiO_4)_6Cl_{1.4}S_{0.3})$  prepared by MASS method. Photochromic samples were put upon daylight or without daylight (in darkness) for varied durations at room temperature.