Supporting Information

Coral-like porous tubular Ni doped g-C₃N₄ nanocomposites as bifunctional templates for photocatalytic degradation and fluorescence detection of sunset yellow in beverages

Yue Li^a, Ping Liu^b, Shisen Li^a, Yanting Ren^b, Wenzhen Du^a, Wenjing Yin^b, Haiyan Jiang^a, Qingli Yang^b, Yongchao Ma^a, *

^a College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University,

Qingdao, 266109, P. R. China

^b College of Food Science and Engineering, Qingdao Agricultural University, Qingdao,

266109, P. R. China

*Corresponding authors: <u>yongchaoma@126.com</u>.

Characterization

The microscopic morphology of the produced catalysts was examined using field emission scanning electron microscopy (SEM, S-4800, Hitachi) and field-emission transmission electron microscopy (TEM, JOEL JEM 2001). The structures were analyzed by X-ray powder diffractometry (XRD, TD-3700, China) and Fourier transform infrared spectroscopy (FTIR, Nicolet iS10, USA). The pore size distribution was assessed using the Barrett-Joyner-Halenda (BJH) method on a Quantatech N22-27E analyzer. The valence states of the elements were examined using X-ray photoelectron spectroscopy (XPS, Thermo Escalab 250Xi, USA). The light absorption characteristics were assessed using an ultraviolet-visible spectrometer equipped with an integrating sphere (UV–vis DRS, Shimadzu UV-3900, Japan). Photo-luminescence (PL) spectroscopy was conducted using a fluorescence spectrometer (PL, Shimadzu F-7000, Japan). Time-resolved fluorescence spectroscopy (TRPL) was evaluated using the FLS1000 from Edinburgh Instruments, UK.

For the photoelectrochemical experiments, an Ag/AgCl electrode was selected as the reference electrode, while a Pt sheet electrode served as the counter electrode. The experiments were conducted using an electrochemical workstation (CHI660E, Chenhua, Shanghai, China) using a 0.1 M Na₂SO₄ solution as the electrolyte. A 300 W xenon lamp was chosen as the light source, and the transient photocurrent response with a bias voltage of -0.27 V was evaluated over time throughout the on/off illumination cycle. The electrochemical impedance spectra were recorded throughout a frequency range of 1000 kHz to 0.01 Hz, while the Mott-Schottky curves were evaluated within a voltage range of -1 to 1 V.

Fig. S1. (a, b) SEM and (c, d) TEM images with different magnifications of pristine

CN samples.

Fig. S2. (a, b) TEM images with different magnifications of Ni-CN NS.

Fig. S3. (a) XPS survey spectra of CN and Ni-CN-0.5 samples. (b) high-resolution spectra of Ni-CN-0.5 sample.

Fig. S4. The schematic diagram of three different N vacancies in carbon nitride: Nv-2C, Nv- $3C_1$, and Nv- $3C_2$.

Fig. S5. Initial and optimized coordination structures of Ni single atoms on $g-C_3N_4$ structural units.

Fig. S6. Charge density differences for Ni-CN-0.5, in which yellow and light blue represent electron accumulation and depletion, respectively (Green: Ni single atom. Blue: N atoms. Grey: C atoms).

Fig. S7. (a) TRPL spectra and (b) EIS Nyquist plots of CN and Ni-CN-0.5.

Fig. S8. Photocatalytic degradation curves of Ni-CN-0.5 sample for SY under dark conditions

Fig. S9. Changes in fluorescence emission of Ni-CN NS on the addition of various

analytes.

Fig. S10. (a) Changes in the emission spectra of Ni-CN NS for orange juice in the presence of SY.

(b) Linearity of F_0/F versus SY concentration in orange juice (10.0-80.0 μ M).

Fig. S11. (a)Absorption spectra of Ni-CN NS before and after the addition of SY, (b) Ni-CN NS before and after the addition of SY and the zeta potential of SY.

Sample	τ_1/ns	$B_1(\%)$	τ_2/ns	B ₂ (%)	Average/ns
CN	2.2784	46.02	9.6423	53.98	6.25
Ni-CN	2.1516	47.98	9.0808	52.02	5.76

 Table S1. Fluorescence decay results of CN and Ni-CN.

Sample	Spiked (µM)	Found (µM)	Recovery (%)	RSD (%, n=3)
Orange juice	10	9.48	94.8	1.49
	20	19.76	98.8	2.74
	30	29.57	98.57	1.15

Table S2 Detection of SY in a real sample (n = 3)

The above results are the average of three repeated experiments.

Sample	τ_{l}/ns	B ₁ (%)	τ_2/ns	B ₂ (%)	τ_3/ns	B ₃ (%)	Average/ns
Ni-CN NS	0.7904	18.86	3.5436	53.63	12.9204	27.51	5.6
Ni-CN NS+SY	0.5658	28.01	2.6891	51.46	11.4343	20.53	3.89

 Table S3. fluorescence decay results of Ni-CN NS after the addition of SY.

Photocatalyst	Light source	Sunset Yellow Removal(%)	C ₀ /mg/L	Dosage (g/L)	Time (min)	Reference
CS–ZnSe	solar radiation	97%	20-30	1	180	1
rGO-CdS	4150 lumens 85 W Oreva CFL bulb (450 $< \lambda < 650$ nm)	66%	10	0.5	270	2
ZnCo-LDHs/g-C ₃ N ₄	UV irradiation ($\lambda = 365$ nm)	99.6%	75	1.25	90	3
Se-NPLs	solar radiation	83.8%	5	0.3	600	4
CDCNs	300 W Xenon lamp ultraviolet cut-off and an infrared filter (420 < λ < 780 nm)	96.3%	2.5	0.11	60	5
PMS-driven CFO	150 W four visible Osram lamps (400 < λ < 800 nm)	91.8%	14.02	0.49	120	6
Ni-CN	300 W xenon lamp cut-off filter ($\lambda = 420$ nm)	96.9%	10	0.3	120	Our work

Table S4. Comparison with other photocatalysts for LY or other analogs degradation.

References

- S. Zhang, Saeeda, A. Khan, N. Ali, S. Malik, H. Khan, N. Ali, H. M. N. Iqbal and M. Bilal, *Environ Res*, 2022, **213**, 113722.
- 2. M. Kaur, A. Umar, S. K. Mehta and S. K. Kansal, *Applied Catalysis B:* Environmental, 2019, 245, 143-158.
- Z. Jie, L. Yang, T. Huiyuan, X. Mengyan, D. Xiuhong, W. Zehua, L. Chunguang,
 D. Xianying and C. Jiehu, *Environ Sci Pollut Res Int*, 2023, 30, 100450-100465.
- R. Hassanien, A. A. I. Abed-Elmageed and D. Z. Husein, *ChemistrySelect*, 2019, 4, 9018-9026.
- D. Gong, J. Guo, F. Wang, J. Zhang, S. Song, B. Feng, X. Zhang and W. Zhang, Food Chem, 2023, 425, 136470.
- 6. Ö. Tuna and E. Bilgin Simsek, *Optical Materials*, 2023, 142.