Supplementary Information

Selective Heteroepitaxial Synthesis of 2D Bismuth-Based Mixed-Anion Compounds with Interfacial Spin-Orbit Interaction via Atmospheric Solution Routes

Zhengkang Peng,^a Daichi Oka,^{*ab} Yasushi Hirose,^b and Tomoteru Fukumura^{acd}

- a. Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba, Sendai, Sendai 980-8578, Japan
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
- c. WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- d. Center for Science and Innovation in Spintronics, Organization for Advanced Studies, Tohoku University, Sendai 980-8577, Japan

Product	Temperature (°C)	Precursor 1 (Concentration)	Precursor 2 (Concentration)	
Bi ₂ OS ₂	500-530	$BiCl_3$ (3.75 mmol L ⁻¹) and		
		thiourea (10 mmol L^{-1})		
Bi ₃ O ₂ S ₂ Cl	400–520	$BiCl_3$ (7.5 mmol L ⁻¹)	thiourea (20 mmol L ⁻¹)	

Table S1. Temperature and precursors in the synthesis of the Bi_2OS_2 and $Bi_3O_2S_2Cl$ epitaxial thin films.

Table S2. Gas and flow rates in the synthesis of the Bi₂OS₂ and Bi₃O₂S₂Cl epitaxial thin films.

Product	Carrier gas (flow	Dilution gas (flow	Carrier gas (flow	Dilution gas (flow
	rate) for precursor 1	rate) for precursor 1	rate) for precursor 2	rate) for precursor 2
Bi ₂ OS ₂	$N_2 (7.0 \ L \ min^{-1})$	$O_2 (0.1 \text{ Lmin}^{-1})$	N/A	N/A
Bi ₃ O ₂ S ₂ Cl	N_2 (3.5 L min ⁻¹)	$N_2 (0.3 \text{ Lmin}^{-1})$	N_2 (2.5 L min ⁻¹)	$O_2 (0.2 \text{ Lmin}^{-1})$

Figure S1. XRD θ -2 θ patterns for (a) Bi₂OS₂ and (b) Bi₃O₂S₂Cl thin films synthesized on LSAT (100) substrates in independent experiments on different dates.

Figure S2. XRD θ -2 θ patterns for Bi₂OS₂ and Bi₃O₂S₂Cl epitaxial thin films on SrTiO₃ (001) substrates.

Figure S3. Reciprocal space maps for (a) Bi_2OS_2 and (b) $Bi_3O_2S_2Cl$ epitaxial thin films on $SrTiO_3$ (001) substrates.

(a) Bi₂OS₂

Figure S4. SEM images for a) Bi_2OS_2 and b) $Bi_3O_2S_2Cl$ thin films synthesized on LSAT (001) substrates at various temperatures.

Figure S5. a–b) SEM images and c–d) EDS spectra around the Bi M α peaks for the spots indicated in (a) and (b) for Bi₂OS₂ (a, c) and Bi₃O₂S₂Cl (b, d) thin films.

Compensation of charge and structural mismatches at the interface between the Bi₃O₂S₂Cl and LSAT substrate

Figure S6a and b shows the crystal structure of δ -Bi₂O₃ with the same fluorite structure as the [Bi₂O₂]²⁺ slab in Bi₃O₂S₂Cl and perovskite-type LSAT. While the Bi³⁺ cation is allocated at the 8 coordinate site in the fluorite structure, La/Sr cations and Al³⁺/Ta⁵⁺ cations occupy the 12 and 6 coordinate sites in the perovskite structure, respectively. Thus, the fluorite and perovskite structures cannot be epitaxially stacked without deforming their original structures. In Reference S1, such a structural mismatch was successfully compensated by inserting a buffer layer of defect fluorite Ln_{0.5}Zr_{0.5}O_{1.75} (Ln = La, Nd), where the oxygen defect allows an asymmetric interfacial coordinate structure. Because δ -Bi₂O₃ is also a defect fluorite where 3/4 of the oxygen sites are occupied, formation of a similar interfacial structure is possible. Accordingly, Bi ions would occupy the site close to the A site of the surface layer of [BiO]¹⁺. In order to compensate this charge, formation of δ -Bi₂O₃-like interfacial slab would be favored where occupancy of the oxygen site alternatively varied to form the charged [Bi₂O₂]²⁺ and [O]²⁻ slabs according to the STEM image. The relatively high contrast of the [O]²⁻ slabs in the ABF image suggests partial inclusion of S²⁻ and Cl⁻ ions, although the structure of the δ -Bi₂O₃ layer differs from those of BiOCl and Bi₂O₂S.

Figure S6. Schematic illustration of the crystal structures of a) fluorite-type δ -Bi₂O₃, b) perovskite-type LSAT, and c) interface between the Bi₃O₂S₂Cl epitaxial thin film and LSAT substrate.

Investigation on the k-linear and k-cubic SOI in the ILP expression of the weak localization effect

The general formula of the magnetoconductance in the Iordanskii, Lyanda-Geller, Pikus (ILP) theory is given by the following equation: ^{S2–S4}

$$\Delta G(B) = -\frac{e^2}{2\pi h} \left[\frac{1}{a_0} + \frac{2a_0 + 1 + \frac{B_{SO1} + B_{SO3}}{B}}{a_1 \left(a_0 + \frac{B_{SO1} + B_{SO3}}{B} \right) - 2\frac{B_{SO1}}{B}} - \sum_{n=0}^{\infty} \left\{ \frac{3}{n} - \frac{3a_n^2 + 2a_n \frac{B_{SO1} + B_{SO3}}{B} - 1 - 2(2n+1)\frac{B_{SO1}}{B}}{\left(a_n + \frac{B_{SO1} + B_{SO3}}{B} \right) a_{n-1}a_{n+1} - 2\frac{B_{SO1}}{B} [(2n+1)a_n - 1]} \right\}$$
(S1)
+ $2ln \frac{B_{tr}}{B} + \Psi \left(\frac{1}{2} + \frac{B_{\phi}}{B} \right) + 3C \right]$

where *e* is the elementary charge, *h* is the Planck constant, *C* is the Euler constant, $\Psi(x)$ is the digamma function, B_{φ} and B_{tr} are the characteristic magnetic fields for phase coherence and spin orbit scattering, respectively, B_{SO1} and B_{SO3} are the characteristic magnetic field for spin-orbit scattering derived from the effective Hamiltonian containing the *k*-linear and *k*-cubic terms, respectively, and $a_n = n + \frac{1}{2} + \frac{B_{\phi}}{B} + \frac{B_{SO1} + B_{SO3}}{B}$. When $B_{SO1} = 0$, equation S1 is simplified to Equation 1 in the main text. Figure S7 is the results of fitting for the magneto conductance data measured for the Bi₃O₂S₂Cl epitaxial thin film at 2 K in the conditions $B_{SO3} = 0$ (with only the *k*-linear term) and $B_{SO1} = 0$ (with only the *k*-cubic term), where the infinite sum was added up to $n = 1 \times 10^5$. While the former model deviated from the experimental data at magnetic fields over ~0.35 T, the latter condition gave reasonable fitting in all the measured range. This situation is similar to the systems with cubic Rashba effect in the previous reports.^{S2,S4}

Figure S7. Magnetoconductance for the Bi₃O₂S₂Cl epitaxial thin film under out-of-plane magnetic field at 2 K fitted by equation S1 in the conditions $B_{SO3} = 0$ (with only the *k*-linear term; blue curve) and $B_{SO1} = 0$ (with only the *k*-cubic term; red curve).

Figure S8. Schematic illustration of the orbital energy level evolution of 6p orbitals of Bi by the crystal field splitting (CFS) under a D_{4h} point group symmetry and spin orbit interaction (SOI).

References

- S1 M. O'Sullivan, J. Hadermann, M. Dyer, S. Turner, J. Alaria, T. Manning, A. Abakumov, J. Claridge and M. Rosseinsky, *Nat. Chem.* 2016, 8, 347–353.
- S2 H. Nakamura, T. Koga and T. Kimura, *Phys. Rev. Lett.* 2012, **108**, 206601.
- S3 B. L. Altshuler, A. G. Aronov and D. E. Khmelnitsky, J. Phys. C 1982, 15, 7367.
- S4 R. Moriya, K. Sawano, Y. Hoshi, S. Masubuchi, Y. Shiraki, A. Wild, C. Neumann, G. Abstreiter, D. Bougeard, T. Koga and T. Machida, *Phys. Rev. Lett.* 2014, **113**, 086601.