A heterojunction of high-entropy alloy and nitrogen-doped carbon nanospheres

for efficient electromagnetic wave absorption

Qin Zhang ^a, Ying Ye^a, Lei Sun^a, Ping Sun^{b**}, Jie Wei^{a*}, Qi Gan^{a*}

^a Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and

Engineering, East China University of Science and Technology, 200237, PR China

^b Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, PR China

* Corresponding author. Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials

Science and Engineering, East China University of Science and Technology, 200237, PR China

** Corresponding author. Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai,

200235, PR China

E-mail address: sunping1127@126.com (P. Sun), jiewei7860@sina.com (J. Wei), ganqi789@163.com (Q.

Gan)

Fig. S1 (a) XPS survey spectrum and (b) high-resolution XPS spectrum of C 1s of HEA/NC2.

Fig. S3 (a) 3D RL surface plots, (b) 2D RL projections and (c) $|M_Z-1|$ curves of HEA/NC1.

Fig. S4 2D RL, $|M_Z-1|$ curves and corresponding theoretical matching thickness curves at different thicknesses of HEA/NC1.

Fig. S5 Attenuation constant (α) curves of HEA and HEA/NC.

Fig. S6 Schematic diagram of (a) RCS modeling and (b) reduced radar imaging

Samples	C (wt%)	N (wt%)
HEA/NC1	17.98	2.07
HEA/NC2	25.05	2.92
HEA/NC3	30.37	3.51

Table S1. The content of carbon and nitrogen in the HEA/NC samples

Table S2. Comparison of wave-absorbing properties between HEA/NC2 and other HEA-based materials

Absorbers	RLmin/dB	d(RLmin)/mm	EAB/GHz	d(EAB)/mm	Filling ratio/wt%	Refs.
FeCoNiCuMn _{0.5} /C	-52.3	2.35	5.52	2.00	20	5
FeCoNiCuTi _{0.2}	-47.8	2.16	4.76	2.65	50	11
FeCoNiCr#CN10	-32.3	3.27	4.46	2.58	70	13
FeCoNiCuC _{0.04}	-61.1	1.72	5.1	1.70	65	14
FeCoNiCrCuAl _{0.3}	-40.2	1.70	4.48	1.70	50	15
$Pt_{18}Ni_{26}Fe_{15}Co_{14}Cu_{27}/rGO$	-41.8	4.00	2.50	2.00	50	16
HEA@air@Ni-NiO	-41.4	1.80	4.00	1.30	50	17
FeCoNiMn#P50	-62.4	2.46	4.10	2.75	70	49
HEA/NC2	-56.3	1.80	5.69	1.80	30	This work