Scandia-doped zirconia for the electrochemical detection of hazardous dihydroxybenzene isomers in water

A. Ferlazzo^{*a,b}, A. Gulino^{a,b}, G. Neri^{*c}.

^aDepartment of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy

^bINSTM UdR of Catania, Viale Andrea Doria 6, 95125 Catania, Italy

^cDepartment of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy

* Corresponding author: <u>angelo.ferlazzo@unict.it; gneri@unime.it;</u>

Fig. S1. Electrochemical behavior using CV in 0.01 M PBS at a scan rate of 50 mV/s of the SPCE, $ZrO_20Y/SPCE$, $ZrO_28Y/SPCE$ and $ZrO_210Sc/SPCE$ sensor in the -0.4 – 1.2 V potential window.

Fig. S2. Linear sweep voltammetry (LSV) behavior of 100 μ M HQ, RS and CC in 0.01 M PBS at a scan rate of 50 mV/s with: a) SPCE, b) ZrO₂0Y/SPCE, c) ZrO₂8Y/SPCE, and d) ZrO₂10Sc/SPCE in the -0.4 –

1.2 V potential window. e) Variation of the anodic peak current for the three DHB isomers registered with the sensors tested.

Fig. S3. a) Cyclic voltammograms of $ZrO_210Sc/SPCE$ in a solution containing 100 μ M HQ, CC e RS in PBS at pH=7.4 at scan rates from 2 to 400 mV/s. The inset shows the variation using the scan rate of 2 and 6 mV⁻¹; The variation of baseline-corrected anodic peak currents (Ipa) as a function of scan rate (b) HQ, (c) CC and (d) RS is shown.

Fig. S4. *CV* of (a) HQ, (c) CC and (e) RS standard solutions with increasing concentrations from 0 to 2000 μ M of analytes recorded in a 0. 01 M PBS of pH = 7.4 using ZrO₂10Sc/SPCE. Calibration graphs for peak currents (baseline corrected) as a function of analyte concentrations of (b) HQ, (d) CC, and (f) RS.