Supporting Information

Naked eye detection of Arsenite, Arsenate, and H₂S using a single paper strip, based on deprotonation mechanism by a Schiff base naphthaldehyde conjugate

Diptiman De^{a,c}, Priyotosh Ghosh^a, Sriman De^b and Prithidipa Sahoo*^a

^aDepartment of Chemistry, Visva-Bharati University, Santiniketan-731235, India.

^bDepartment of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.

^cDepartment of Chemistry, Gushkara Mahavidyalaya, Guskara- 713128, West Bengal, India.

Entry	Title	Page No
1	Performance comparison of existing methods and present method for detection of AsO_2^- , AsO_4^{3-} and H_2S	S2-S3
2	NMR Studies	S4-S5
3	Job's plot of NADNP with AsO_2^- and AsO_4^{3-}	S 6
4	Evaluation of the association constants by UV-vis method (NADNP-As ³⁺ /As ⁵⁺ complex)	S7-S8
5	Calculation of limit of detection (LOD) by UV-vis method (NADNP-As ³⁺ /As ⁵⁺ complex)	S9-S10
6	Job's plot of NADNP with H ₂ S	S11
7	Evaluation of the association constants by UV-vis method (NADNP- H_2S complex)	S12
8	Calculation of limit of detection (LOD) by UV-vis method (NADNP- H ₂ S complex)	S13
9	pH titration study	S14
10	Partial HRMS of the mixed assay systems	S15-S17
11	DFT study	S18-S20
12	Quantitative analysis of Arsenite, Arsenate and H ₂ S in water sample	S21-S23
13	Statistic evaluation of the paper strip	S24
14	Spiked recovery experiment	S25
15	Sensor Sensitivity between solutions and paper strips	S26

Table of Contents

1. Performance comparison of existing methods and present method for detection of AsO_2^- , AsO_4^{3-} and H_2S .

Table S1. Performance comp	parison of existing	g methods and pre	esent method for detection	of AsO_2^- and AsO_4^{3-} .

Sensors	Analytes	Detection method	Detection medium	Sensitivity	Detection limits	Estimation	Reference
(2- hydroxy napthaldehyd e conjugated 2,4-DNP)	AsO ₂ -, AsO ₄ ³⁻ and H ₂ S	colorimetric	DMSO:H ₂ O (4:1 v/v, pH 7.0, 10 mM Tris-HCl buffer).	High	0.15 μM and 0.17 μM	Yes	Present work
RhB molecules	H ₂ AsO ^{4–} and HAsO4 ^{2–}	fluorometric	Aqueous medium	High	10 g/L	Yes	<i>Sensors</i> <i>and</i> <i>Actuators</i> <i>B.</i> , 2017, 241 ,1014– 1023
benzothiazole Schiff base	As ³⁺ /As ⁵⁺	colorimetric	(DMSO:H ₂ O ; 1:1, v/v)	High	<7.0 ppb	No	Anal. Methods, 2017, 9 , 1779-1785
2-((2- hydroxynapht halen-1- yl)methylene) hydrazine	AsO ₂ - and CN-	Colorimetric and fluorometric	DMF:H ₂ O (HEPES buffer of 7.2 pH) (9:1, v/v solution)	High	66 nM	Yes	<i>RSC Adv.,</i> 2016, 6 , 100136- 100144
2,6-diformyl- p-cresol with 4- aminoantipyri ne	AsO ₃ ³⁻	fluorometric	HEPES buffer (1 mM, pH 7.4) (DMSO- Water 1:9)	High	4.12 ppb	No	Anal. Chem., 2014, 86 , 11357– 11361
5-methyl isatin	AsO2 ⁻ and Hg ²⁺	colorimetric	in DMSO	Modarate	10.42 μM for AsO ₂ -	No	Sensors and Actuators B: Chemical, 2019, 284 , 271-280
hydrazine- based thiocarbamide	PO_4^{3-} and AsO_3^{3-}	Colorimetric and fluorometric	9:1 v/v Acetonitrile: $H_2O (pH = 7.2)$	Modarate	34 nM	Yes	New J. Chem., 2018, 42 , 6236-6246

Table S2. Performance comparison of existing methods and present method for detection of H_2S .

Sensors	Analytes	Detection method	Detection medium	Sensitivity	Detection limits	Estimation	Reference
(2- hydroxy napthaldehyde conjugated 2,4- DNP)	H ₂ S/S ²⁻ and AsO ₂ ^{-/} AsO ₄ ³⁻	colorimetric	DMSO:H ₂ O (4:1 v/v, pH 7.0, 10 mM Tris-HCl buffer).	High	0.17 μM and 0.15 μM	Yes	Present work
2,3- dihydroxybenzal dehyde and sulfanilamide	H ₂ S	colorimetric	DMSO: Bis–Tris buffer (4:6, 10 mM, pH 7.0)	High	30 µM	Yes	Anal. Methods, 2021, 13 , 1332
Naminophthali mide and 8- hydroxyjulolidi ne-9- carboxaldehyde	Cu ²⁺ , PO ₄ ³⁻ and S ²⁻	colorimetric and fluorometric	buffer/DMF solution (3/2, v/v, 10 mM bis-tris, pH = 7.0)	Low		No	Ind. Eng. Chem. Res., 2017, 56 , 8399–8407
5-(azo- benzene)- Salicylidene- aniline	H ₂ S	colorimetric and fluorometric	DMSO DMSO– phosphate-buffere d saline (PBS) (4:1, v/v, pH 7.4).	High		No	Luminescen ce., 2017, 32 , 765-771
azo-dye based bis-Schiff base	S ²⁻	colorimetric and fluorometric	HEPES buffer (10 mL, pH 7.00).	High	16 µM	Yes	Anal. Methods, 2018, 10 , 2317-2326
2-aminoethyl piperazine and 4-chloro-7- nitrobenz-2-oxa- 1,3-diazole	$\begin{array}{c} H_2S,\\ Hg^{2+}\end{array}$	colorimetric	bis-tris buffer solution (10 mM, pH 7.0) to	Modarate		No	Dalton Trans., 2016, 45 , 5700-5712
Dabsyl based	$\begin{array}{c} \mathrm{H_2S,}\\ \mathrm{Hg^{2^+}} \end{array}$	colorimetric	HEPES-CH₃CN buffer.	colorimetri c	28 mM	No	ChemistryS elect, 2016, 1,1533- 1540
4-(piperidin-1- yl) naphthalene- 1,2-dione	H ₂ S	colorimetric and fluorometric	CH3CN: HEPES buffer (50:50, v:v, pH-7.4)	High	0.77 μΜ	No	<i>Org.</i> <i>Biomol.</i> <i>Chem.</i> , 2016, 14 , 570-576
2- hydroxy-1- napthylaldehyde	H ₂ S/HS ⁻	colorimetric and fluorometric	CH ₃ CN:HEPES buffer solution	High	1.67 µM	No	New J. Chem., 2015, 39 , 5669-5675

2. NMR Studies

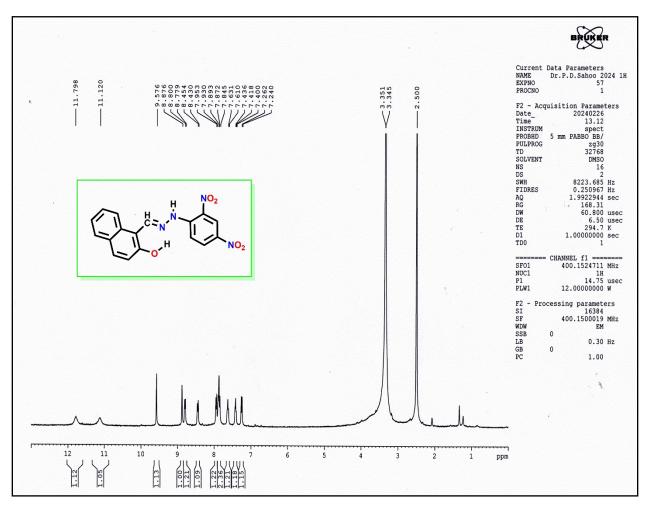


Fig. S1 ¹H NMR of NADNP in DMSO-d₆ (400 MHz).

¹³C NMR of NADNP in DMSO-d₆ :

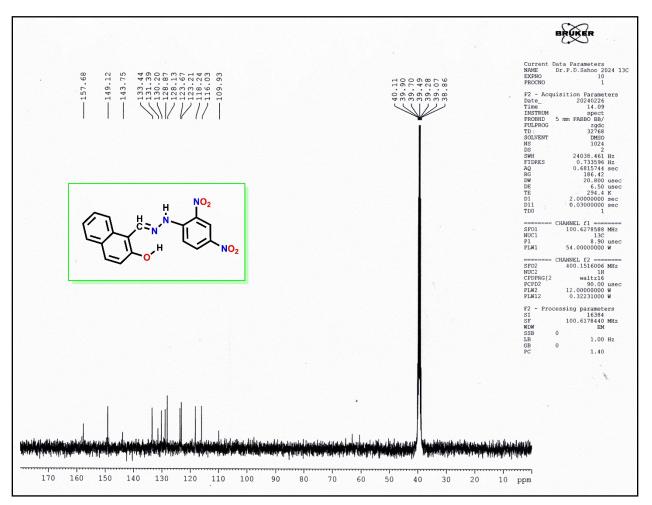


Fig. S2 ¹³C NMR of NADNP in DMSO-d₆ (100 MHz).

3. Job's plot of NADNP with AsO_2^- and AsO_4^{3-} .

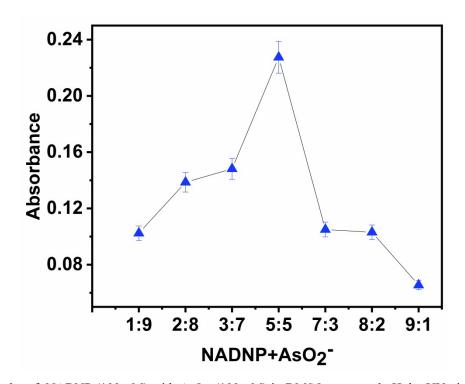
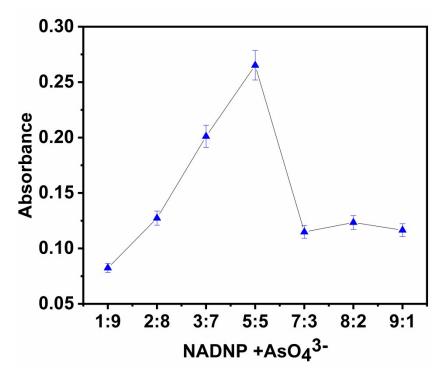
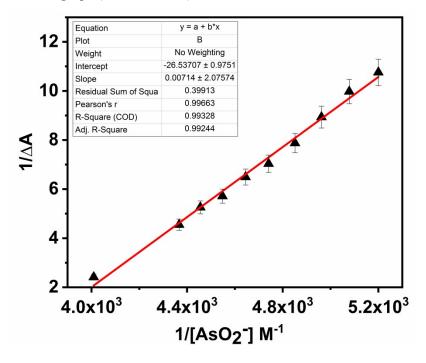



Fig. S3 Job's plot of NADNP (100 μ M) with AsO₂⁻ (100 μ M) in DMSO, at neutral pH, by UV-vis method (at 519 nm), which indicate 1:1 stoichiometry for NADNP with AsO₂⁻. Standard deviations are represented by error bar (n=3).

Fig. S4 Job's plot of NADNP (100 μ M) with AsO₄³⁻ (100 μ M) in DMSO, at neutral pH, by UV-vis method (at 515 nm), which indicate 1:1 stoichiometry for NADNP with AsO₄³⁻. Standard deviations are represented by error bar (n=3).

4. Evaluation of the association constants by UV-vis method (NADNP-As³⁺/As⁵⁺ complex):


a) Determination of the association constants for the formation of NADNP-As³⁺complex:

Association constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

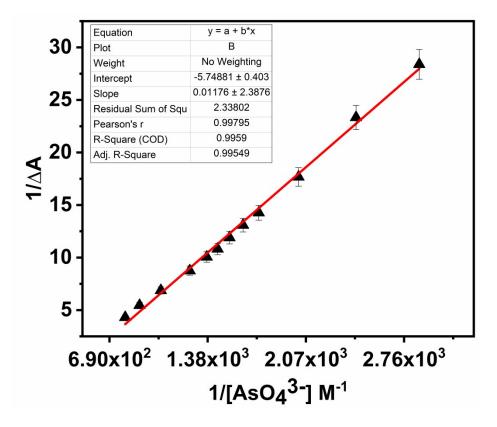
$$1/(A-A_o) = 1/{K(A_{max}-A_o)[G]^n} + 1/[A_{max}-A_o]$$

Here, A_o is the absorbance of receptor in the absence of guest, A is the absorbance recorded in the presence of added guest, A_{max} is absorbance in presence of added [G]_{max} and K_a is the association constant, where [G] is [AsO₂⁻]. The association constant (Ka) could be determined from the slope of the straight line of the plot of 1/(A-Ao) against 1/[AsO₂⁻] and is found to be:

Binding constant calculation graph (UV-vis method):

Fig. S5 Linear regression analysis $(1/[G] \text{ vs } 1/\Delta A)$ for the calculation of association constant value by UV-vis titration method. Standard deviations are represented by error bar (n=3).

The association const. (K_a) of NADNP for sensing AsO₂⁻ was determined from the equation: K_a = intercept/slope. From the linear fit graph, we get intercept =26.53707, slope = 0.00714. Thus, we get, K_a = 26.53707/0.00714 = 3.7 x 10³ M⁻¹.


b) Determination of the association constants for the formation of NADNP-As⁵⁺complex:

Association constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

$$1/(A-A_o) = 1/\{K(A_{max}-A_o)[G]^n\} + 1/[A_{max}-A_o]$$

Here, A_o is the absorbance of receptor in the absence of guest, A is the absorbance recorded in the presence of added guest, A_{max} is absorbance in presence of added $[G]_{max}$ and K_a is the association constant, where [G] is $[AsO_4^{3-}]$. The association constant (Ka) could be determined from the slope of the straight line of the plot of 1/(A-Ao) against $1/[AsO_4^{3-}]$ and is found to be:

Binding constant calculation graph (UV-vis method):

Fig. S6 Linear regression analysis $(1/[G] \text{ vs } 1/\Delta A)$ for the calculation of association constant value by UV-vis titration method. Standard deviations are represented by error bar (n=3).

The association const. (K_a) of NADNP for sensing AsO_4^{3-} was determined from the equation: K_a = intercept/slope. From the linear fit graph, we get intercept =5.74881, slope = 0.01176. Thus, we get, K_a = 5.74881/0.01176= 4.9 x 10² M⁻¹.

5. Calculation of limit of detection (LOD) by UV-vis method (NADNP-As³⁺/As⁵⁺ complex):

a) Limit of detection (LOD) NADNP with As³⁺:

The detection limit of the chemosensor NADNP for AsO_2^- was calculated on the basis of UV-vis method. To determine the standard deviation for the absorbance, the absorbance of four individual receptors without AsO_2^- was measured by 10 times and the standard deviation of blank measurements was calculated. The limit of detection (LOD) of NADNP for sensing AsO_2^- was determined from the following equation²⁻³:

$LOD = K \times SD/S$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

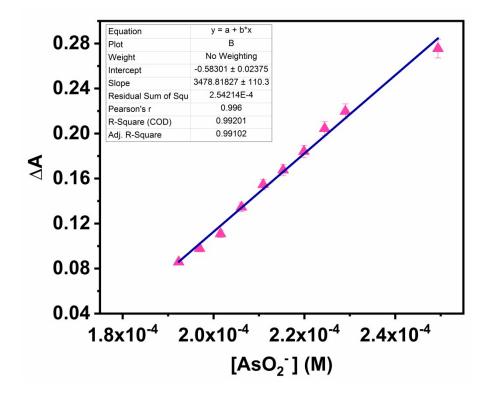


Fig. S8 Linear fit curve of NADNP at 519 nm with respect to AsO_2^- concentration. Standard deviations are represented by error bar (n=3).

For NADNP with As³⁺:

From the linear fit graph, we get slope = 3478.81827, and SD value is 0.0001.

Thus, using the above formula, we get the Limit of Detection = 1.5×10^{-7} M (0.15 µM). Therefore, NADNP can detect AsO₂⁻ up to this very lower concentration by UV-vis method.

b) Limit of detection (LOD) NADNP with As⁵⁺:

The detection limit of the chemosensor NADNP for AsO_4^{3-} was calculated on the basis of UV-vis method. To determine the standard deviation for the absorbance, the absorbance of four individual receptors without AsO_4^{3-} was measured by 10 times and the standard deviation of blank measurements was calculated. The limit of detection (LOD) of NADNP for sensing AsO_4^{3-} was determined from the following equation²⁻³:

$$LOD = K \times SD/S$$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

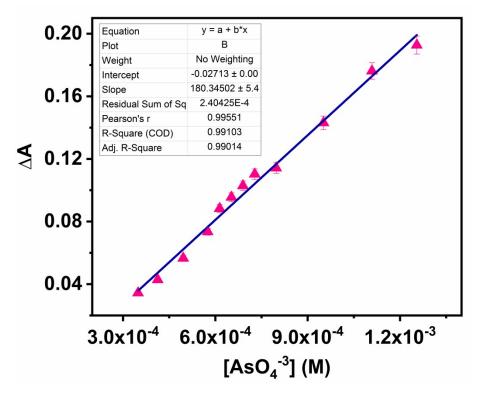


Fig. S7 Linear fit curve of NADNP at 519 nm with respect to AsO_4^{3-} concentration. Standard deviations are represented by error bar (n=3).

For NADNP with As⁵⁺:

From the linear fit graph, we get slope = 180.34502, and SD value is 0.00010.

Thus, using the above formula, we get the Limit of Detection = 1.5×10^{-7} M (0.15 μ M). Therefore, NADNP can detect AsO₄³⁻ up to this very lower concentration by UV-vis method.

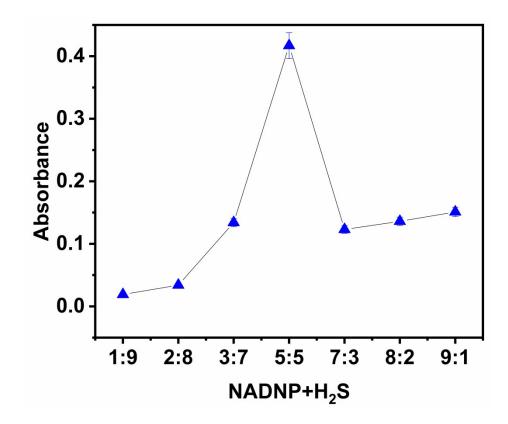
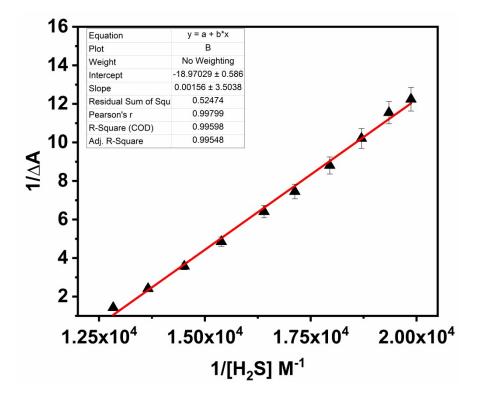


Fig. S9 Job's plot of NADNP (100 μ M) with H₂S (100 μ M) in DMSO, at neutral pH, by UV-Vis method (at 519 nm), which indicate 1:1 stoichiometry for NADNP with H₂S. Standard deviations are represented by error bar (n=3).

7. Evaluation of the association constants by UV-vis method (NADNP-H₂S complex):


Determination of the association constants for the formation of NADNP-H₂S complex:

Association constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

$$1/(A-A_o) = 1/\{K(A_{max}-A_o)[G]^n\} + 1/[A_{max}-A_o]$$

Here, A_o is the absorbance of receptor in the absence of guest, A is the absorbance recorded in the presence of added guest, A_{max} is absorbance in presence of added $[G]_{max}$ and K_a is the association constant, where [G] is $[H_2S]$. The association constant (K_a) could be determined from the slope of the straight line of the plot of 1/(A-Ao) against $1/[H_2S]$ and is found to be:

Binding constant calculation graph (UV-vis method):

Fig. S10 Linear regression analysis $(1/[G] \text{ vs } 1/\Delta A)$ for the calculation of association constant value by UV-vis titration method. Standard deviations are represented by error bar (n=3).

The association const. (K_a) of NADNP for sensing H₂S was determined from the equation: K_a = intercept/slope. From the linear fit graph, we get intercept =18.97029, slope = 0.00156. Thus, we get, K_a = 18.97029/0.00156= 1.2 x 10⁴ M⁻¹.

8. Calculation of limit of detection (LOD) by UV-vis method (NADNP-H₂S complex):

Limit of detection (LOD) NADNP with H₂S:

The detection limit of the chemosensor NADNP for H_2S was calculated on the basis of UV-vis method. To determine the standard deviation for the absorbance, the absorbance of four individual receptors without H_2S was measured by 10 times and the standard deviation of blank measurements was calculated. The limit of detection (LOD) of NADNP for sensing H_2S was determined from the following equation²⁻³:

$LOD = K \times SD/S$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

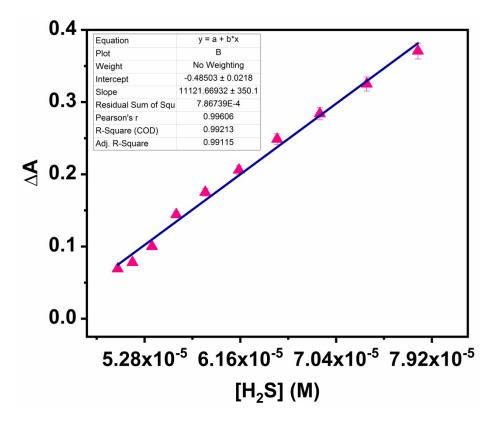
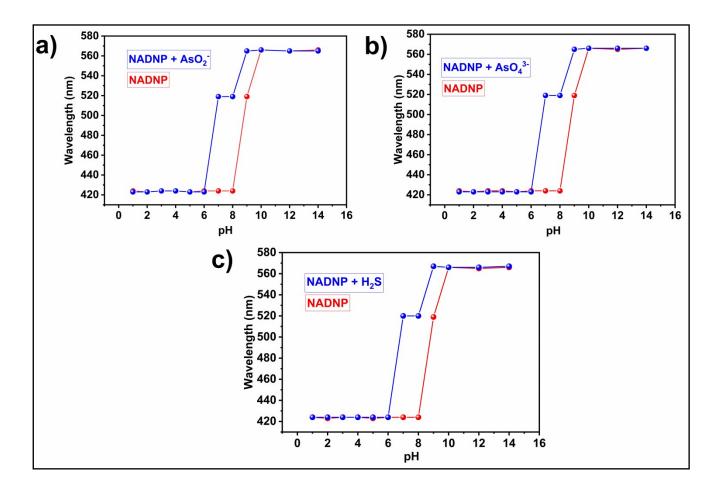
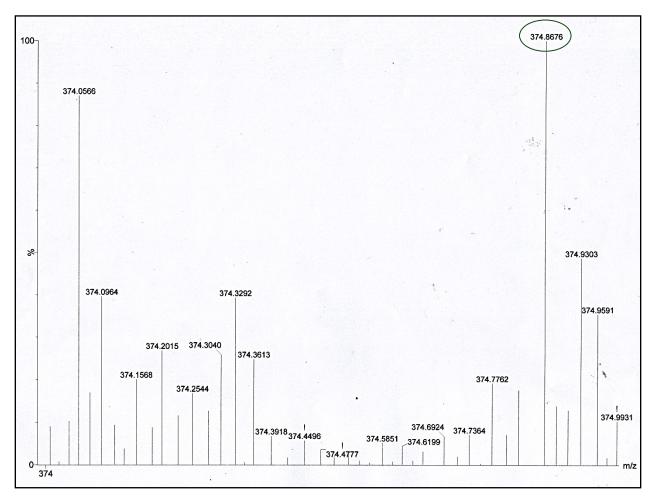



Fig. S11 Linear fit curve of NADNP at 519 nm with respect to H_2S concentration. Standard deviations are represented by error bar (n=3).

For NADNP with H₂S:


From the linear fit graph, we get slope = 11121.66932, and SD value is 0.0004.

Thus, using the above formula, we get the Limit of Detection = 1.7×10^{-7} M (0.17 μ M). Therefore, NADNP can detect H₂S up to this very lower concentration by UV-vis method.

9. pH titration study:

Fig. S12 a) Effect of pH on the wavelength of NADNP (10^{-5} M) in the absence of AsO₂⁻ (redline) and in the presence of AsO₂⁻ (5 x 10^{-3} M, blue line). b) Effect of pH on the wavelength of NADNP (10^{-5} M) in the absence of AsO₄³⁻ (redline) and in the presence of AsO₄³⁻ (5 x 10^{-3} M, blue line). c) Effect of pH on the wavelength of NADNP (10^{-5} M) in the absence of H₂S (redline) and in the presence of H₂S (10^{-3} M, blue line). c) Effect of pH on the wavelength of NADNP (10^{-5} M) in the absence of H₂S (redline) and in the presence of H₂S (10^{-3} M, blue line).

10. Partial HRMS of the mixed assay systems:

Fig. S13 Partial HRMS spectra of NADNP with AsO₂⁻ in MeOH.

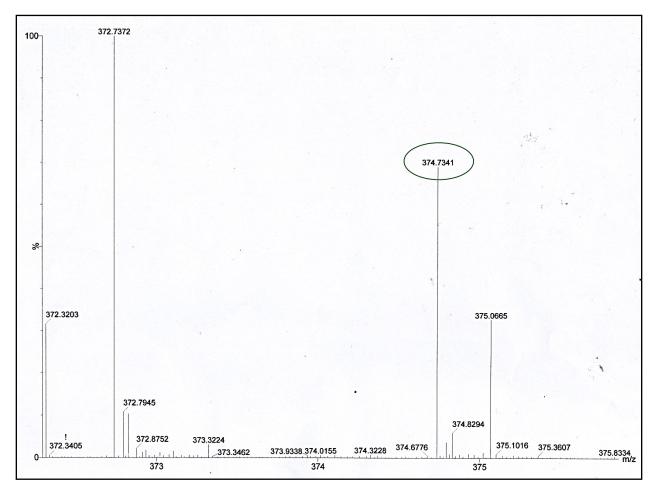


Fig. S14 Partial HRMS spectra of NADNP with AsO₄³⁻ in MeOH.

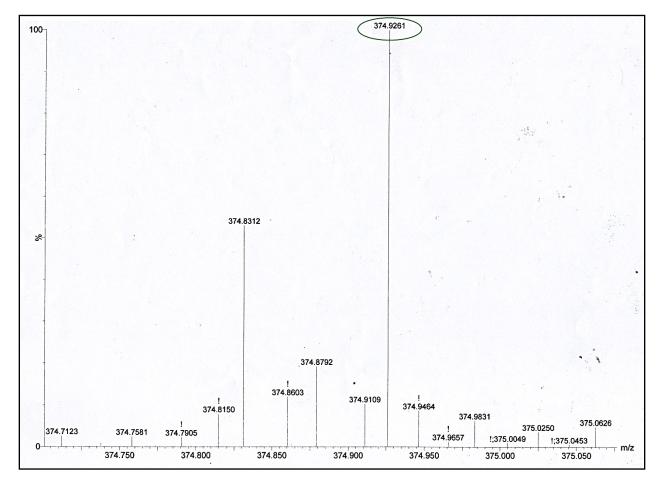


Fig. S15 Partial HRMS spectra of NADNP with H₂S in MeOH.

11. DFT Study

Details	NADNP	NADNP-Na ⁺
Calculation method	B3LYP	B3LYP
Basis set	6-31+G (d)	6-31+G (d)
E (B3LYP) (a.u.)	-1250.004713	-1411.756065
Charge, Multiplicity	0, 1	0, 1

Table S3 Details of Geometry Optimization in Gaussian 09 Program.

Table S4 Details of Solvent Single Point Calculation in Gaussian 09 Program.

Details	NADNP	NADNP-Na ⁺
Calculation method	B3LYP	B3LYP
Basis set	6-31+G (d,p)	6-31+G (d,p)
E(B3LYP) (a.u.)	-1250.05654907	-1411.81140693
Charge, Multiplicity	0, 1	0, 1
Solvent (SMD)	DMSO	DMSO

TDDFT- Calculation

Table S5 TDDFT results of complex Probe at B3LYP/6-31+G(d,p) (SMD=DMSO)//B3LYP/6-31+G(d) level. Total no. of states in the calculation: 20.

Complex	$\lambda(nm)^{[a]}$	f ^[b]	$\Delta E(\mathrm{cm}^{-1})^{[\mathrm{c}]}$	Transitions ^[d]
NADNP	482.86	0.6222	20709.898	HOMO \rightarrow LUMO+1 (99%)
NADNP-Na ⁺	570.83	0.4573	17518.36	HOMO \rightarrow LUMO+1 (99%)

^[a]Wavelength of the transition. ^[b]The oscillator strength of the transition. ^[c]Excitation energies for each transition. ^[d]Molecular orbitals involved in the transitions.

Table S6. Energies of HOMO and LUMO+1 (HOMO = Highest Occupied Molecular Orbital and LUMO = Lowest Unoccupied Molecular Orbital)

Species	E _{HOMO} (a.u.)	$E_{\text{LUMO+1}}$ (a.u.)	∆ <i>E</i> (a.u.)	$\Delta E(eV)$	∆ <i>E</i> (kcal/mol)
NADNP	-0.21146	-0.10492	0.10654	2.899	66.9
NADNP-Na ⁺	-0.19238	-0.10053	0.09185	2.499	57.6

Table S7 Cartesian coordinates (in Å) of the complexes NADNP and NADNP-Na⁺ at B3LYP/6-31+G(d) level of theory.

NA	NADNP						
8	1.122912000	-0.419973000	-0.157043000				
6	2.452868000	-0.212713000	-0.110735000				
6	3.026584000	1.074320000	-0.068858000				
6	2.190871000	2.253126000	-0.073592000				
7	0.890346000	2.203564000	-0.116160000				
7	0.241522000	3.403645000	-0.114333000				
6	-1.112454000	3.499981000	-0.155515000				
6	-1.925788000	2.333495000	-0.202951000				
6	-3.299890000	2.412087000	-0.245124000				
6	-3.928084000	3.670210000	-0.241735000				
7	-5.386161000	3.751143000	-0.286539000				
8	-6.013473000	2.688487000	-0.326043000				
8	-5.904375000	4.869886000	-0.282393000				
6	-3.185070000	4.835084000	-0.196517000				
6	-1.790427000	4.763985000	-0.153579000				
7	-1.082741000	6.031519000	-0.107717000				
8	-1.732739000	7.074564000	-0.109123000				
8	0.166814000	6.014710000	-0.068344000				
6	4.472507000	1.193857000	-0.020673000				
6	5.161875000	2.435833000	0.023639000				
6	6.542571000	2.494727000	0.068662000				
6	7.318522000	1.315802000	0.072156000				
6	6.683426000	0.092669000	0.029846000				
6	5.268406000	0.001928000	-0.016898000				
6	4.623845000	-1.268174000	-0.060511000				
6	3.259149000	-1.377358000	-0.106144000				
1	0.666633000	0.455933000	-0.155799000				

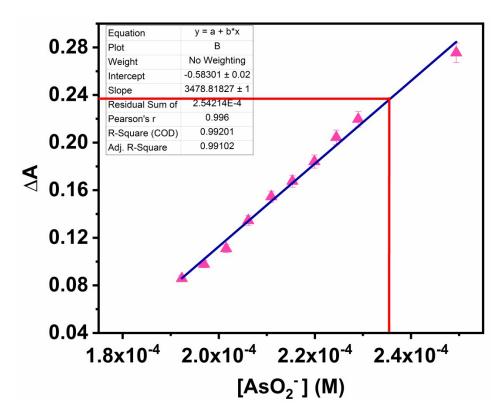
1	2.676258000	3.230626000	-0.039682000
1	0.764887000	4.280400000	-0.081360000
1	-1.443203000	1.365976000	-0.205523000
1	-3.904963000	1.513760000	-0.280986000
1	-3.670920000	5.802040000	-0.193999000
1	4.615856000	3.372806000	0.023006000
1	7.033174000	3.464015000	0.101685000
1	8.402609000	1.374974000	0.107768000
1	7.261377000	-0.828818000	0.031621000
1	5.239542000	-2.164558000	-0.057089000
1	2.759884000	-2.340517000	-0.139621000
NA	DNP-Na ⁺		
8	1.365843000	-0.776921000	-0.916342000
6	2.567266000	-0.460688000	-0.622608000
6	2.983098000	0.876239000	-0.250860000
6	2.089743000	1.980448000	-0.280279000
7	0.783673000	1.983673000	-0.489652000
7	0.252757000	3.271955000	-0.574005000
6	1 0 4 2 1 9 2 0 0 0	2 509204000	0.2002(2000

/	0.232737000	5.2/1955000	-0.374003000
6	-1.043183000	3.508204000	-0.299263000
6	-1.811842000	2.528136000	0.408273000
6	-3.153459000	2.702040000	0.665511000
6	-3.802808000	3.871674000	0.226916000
7	-5.225429000	4.044178000	0.483153000
8	-5.819084000	3.117214000	1.047364000
8	-5.758457000	5.096671000	0.122195000
6	-3.098580000	4.870035000	-0.426556000

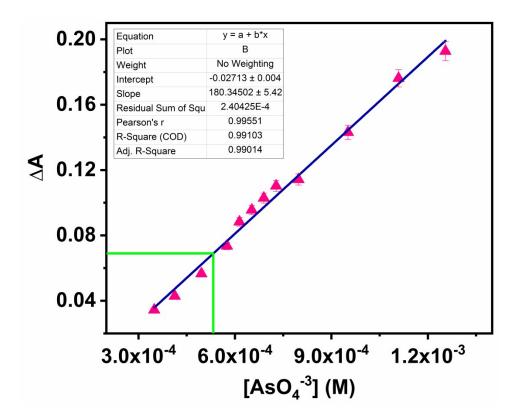
4.707770000

-0.687541000

6


-1.737998000

00	1	2.541100000	2.961898000	-0.126479000
00	1	0.772664000	4.018152000	-1.035406000
00	1	-1.282577000	1.681056000	0.831074000
00	1	-3.714250000	1.964090000	1.227921000
00	1	-3.595987000	5.777541000	-0.744344000
00	1	4.206552000	3.214639000	0.722775000
00	1	6.539762000	3.536992000	1.248201000
00	1	8.184330000	1.665862000	1.026565000
00	1	7.380141000	-0.561226000	0.262628000
00	1	5.623615000	-2.037536000	-0.455429000
00	1	3.245664000	-2.478563000	-0.990054000
~ ~				


7	-1.074941000	5.789819000	-1.384009000
8	-1.739198000	6.758900000	-1.752599000
8	0.154630000	5.692759000	-1.587622000
6	4.382093000	1.125743000	0.111626000
6	4.874764000	2.372343000	0.579355000
6	6.211855000	2.562369000	0.894983000
6	7.138573000	1.511117000	0.776092000
6	6.688921000	0.274804000	0.348977000
6	5.330980000	0.060030000	0.020803000
6	4.885670000	-1.239375000	-0.392470000
6	3.582664000	-1.490998000	-0.688045000
11	-0.466384000	0.182014000	1.217016000

12. Quantitative analysis of Arsenite, Arsenate and H₂S in water sample:

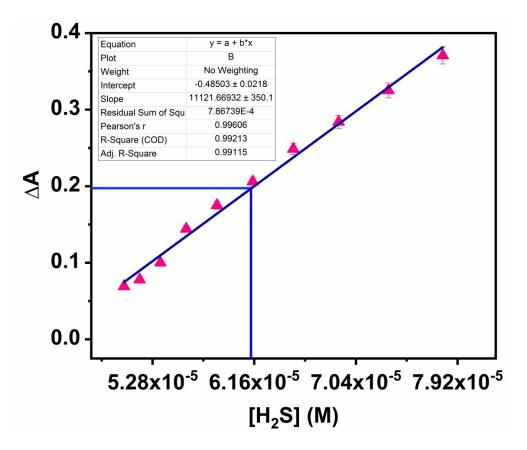

For the quantitative anlysis ,water samples were collected from ground level sources and unused well. Unknown concentrations of arsenite, arsenate, and H_2S were spiked into these water samples in equal volumes (300µL) to prepare artificial arsenite, arsenate, and H_2S contaminated water, respectively.

Fig. S16 Estimation of unknown concentration $(2.35 \times 10^{-4} \text{ M})$ of Arsenite (red line) in artificially arsenite contaminated ground level water from the standard absorbance curve.

Fig. S17 Estimation of unknown concentration $(5.32 \times 10^{-4} \text{ M})$ of Arsenate (green line) in artificially arsenate contaminated ground level water from the standard absorbance curve.

Fig. S18 Estimation of unknown concentration (6.13 x 10^{-5} M) of H₂S (blue line) in artificially H₂S contaminated water of unused well from the standard absorbance curve.

	Concentration of probe solution	Volume of spiked H ₂ S solution of unknown strength with the unknown contaminated sample	Images of paper strips	Concentration of H ₂ S
	10 µM	500 μL		6.70 x 10⁻⁵ M
	10 µM	300 μL		6.13 x 10 ⁻⁵ M
13. S	10 μM tatistic evaluati	200 μL on of the paper strip:		5.92 x 10 ⁻⁵ M

Table S3. Statistic evaluation of the paper strip

Concentration of probe solution	Volume of spiked arsenite solution of unknown strength with the unknown contaminated sample	Images of paper strips	Concentration of arsenite
10 µM	500 μL		2.42 x 10⁻⁴ M
10 µM	300 μL		2.35 x 10 ⁻⁴ M
10 μΜ	200 μL		2.25 x 10⁻⁴ M

14. Spiked recovery experiment:

Table S4. Determination of H_2S in tap water samples with the probe NADNP.

Sample	Added H₂S (μM)	Found H₂S (μM)	Recovery (%)
Ground Water	10	9.8±0.2	98
	15	14.8±0.3	98.6

^a Standard deviation calculation for three measurements.

Table S5. Determination of AsO_2 in tap water samples with the probe NADNP.

Sample	Added AsO₂ ⁻ (μM)	Found AsO₂ ⁻ (μM)	Recovery (%)
Ground Water	10	9.4±0.3	94
	15	14.7±0.3	98

^a Standard deviation calculation for three measurements.

Concentration of probe solution	Volume of spiked H ₂ S solution of unknown strength with the unknown contaminated sample	Images of paper strips	Images of solutions	Concentration of H ₂ S
10 μΜ	500 μL			6.70 x 10⁻⁵ M
10 µM	300 μL			6.13 x 10 ⁻⁵ M

10 µM	200 μL			5.92 x 10 ⁻⁵ M
Concentration of probe solution	Volume of spiked arsenite solution of unknown strength with the unknown contaminated sample	Images of paper strips	Images of solutions	Concentration of arsenite
10 µM	500 μL			2.42 x 10 ⁻⁴ M
10 µM	300 μL			2.35 x 10 ⁻⁴ M
10 µM	200 µL			2.25 x 10⁻⁴ M

15. Sensor Sensitivity between solutions and paper strips:

Table S6. Sensor Sensitivity between solutions and paper strips.