Supplementary Information (SI) for Environmental Science: Advances. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Table S1 Mechanisms and Pros and Cons of Soil Remediation Techniques for As and Cd Co-Contaminated Farmland

Remediation	Technical mechanism	Technical advantage	Technical defect
technology			
Water	By dynamically adjusting the soil pH and Eh	This technology is mature,	In field management, maintaining
management	through alternate drying and wetting of rice	relatively low-cost, and minimally	constant pH and Eh levels is nearly
	fields, precise decisions regarding irrigation	disturbs the soil's physical and	impossible, and achieving precise water
	timing and quantity can be made. Controlling	chemical properties. It is optimal for	management is challenging for ordinary
	the pH to 6.2 and the Eh to -73 mV minimizes	controlling single heavy metals but	farmers.
	the activity of both arsenic (As) and cadmium	requires precise regulation for	
	(Cd).	addressing composite pollution.	
mixing of soil	Deep plowing can be used to turn the top 30	This method is simple to implement	This method cannot fundamentally solve
	cm of soil contaminated with heavy metals to	and suitable for large-scale	the problem of soil contamination, and
	the lower layers, thereby reducing the heavy	application.	deep plowing may lead to groundwater
	metal content in the cultivated soil		pollution.
Soil washing	Chemical reagents and surfactants can be used	This method can quickly reduce the	It is challenging to obtain a chemical
	to leach heavy metals from soil aggregates,	heavy metal content in soil with	leaching agent capable of simultaneously
	directly reducing the heavy metal content in	high removal efficiency and is	removing both As and Cd. The leaching
	the soil.	currently widely used in industrial	method can damage the soil's physical
		site remediation.	and chemical properties and microbial

Table S1 Mechanisms and Pros and Cons of Soil Remediation Techniques for As and Cd Co-Contaminated Farmland

_

Remediation	Technical mechanism	Technical advantage	Technical defect
technology			
			communities. Furthermore, the chemical
			leaching solution may infiltrate and
			contaminate groundwater and surface
			water, causing secondary pollution.
Electrochemistry	By applying an external electric field to create	By utilizing the anode and cathode	This technology is energy-intensive and
	a localized electromagnetic field in the soil,	to attract As and Cd directionally,	generates significant amounts of acidic
	electrophoresis and electroosmosis techniques	these heavy metals can be rapidly	and alkaline by-products near the
	can be used to attract or drive heavy metals	removed. This method is	electrodes, which can damage them.
	away from plant roots.	particularly effective for soils with	There are few reports of its application in
		severe contamination over a	large-scale, low-concentration As and Cd
		localized area.	composite contamination in farmland.
Heavy metal	Hyperaccumulating plants can selectively	This approach can fundamentally	This method involves a lengthy cycle,
super	absorb and transport As and Cd, thereby	reduce the concentrations of As and	particularly due to the extended breeding
accumulator	reducing the total concentration of these heavy	Cd in the soil with minimal impact	period for hyperaccumulating crops.
plants	metals in the soil	on its physical and chemical	Cultivating these plants in different
		properties. Recent reports indicate	locations can make it challenging for
		that hyperaccumulating plants offer	them to become dominant species locally.
		significant remediation effects and	Additionally, it is difficult to reconcile

Remediation technology	Technical mechanism	Technical advantage	Technical defect
		provide an environmentally friendly solution for heavy metal contamination in soil.	with the concept of simultaneous production and remediation.
In-Situ Soil	Soil heavy metal passivation technology is a	This method contributes to	This method does not fundamentally
Passivates	remediation method aimed at mitigating heavy	maintaining ecological balance by	reduce the total concentration of heavy
	metal contamination. The core objective of this	altering the chemical forms of	metals in the soil. Its effectiveness can
	technology is to modify the speciation of heavy	heavy metals in the soil, which	vary depending on different soil
	metals in the soil by introducing specific	reduces their bioavailability and	environments and types of heavy metals.
	substances or treatment methods, thereby	mitigates their toxic effects on	The passivation process may alter soil
	reducing their bioavailability and minimizing	ecosystems and crops. It is	pH, potentially affecting the soil
	their adverse impacts on the environment and	relatively low-cost, making it	ecosystem. Additionally, there is a risk of
	ecosystem. The implementation of this	economically feasible for large-	diminishing remediation effectiveness
	technology aims to decrease the toxicity of	scale applications. The method is	over time. Simultaneous passivation of
	heavy metals in the soil, prevent their uptake	broadly applicable and highly	both As and Cd requires the development
	by plants, and avoid contamination of water	flexible, supporting the	of new, cost-intensive synergistic
	bodies and the food chain, ultimately	development of integrated	passivation agents. Moreover, there is a
	enhancing soil safety and sustainability.	remediation strategies and	risk of secondary release of passivated

Remediation	Technical mechanism	Technical advantage	Technical defect
technology			
	Common passivation techniques include the addition of specialized remediation agents and adjustments to soil pH to improve soil quality and reduce heavy metal mobility and accumulation.	improving overall remediation effectiveness.	materials as time progresses.
Foliar Spraying Agents	Leaf surface passivation technology is a remediation method for addressing heavy metal contamination. It involves applying physiological antagonistic elements, humic acids, and other physiologically active	This technology is easy to implement, environmentally friendly, and relatively cost- effective. It demonstrates significant passivation effects and can also	The efficiency of this method is limited. High concentrations of inorganic foliar passivation agents can cause leaf burn, negatively impacting photosynthetic efficiency, while low concentrations of
	substances to plant leaves. This approach regulates and restricts the transport and distribution of heavy metals within the plant, thereby reducing their accumulation in edible parts and enhancing the safety and quality of agricultural products.	enhance crop yields when applied appropriately. In the context of escalating environmental pollution, leaf surface passivation technology has emerged as a crucial method for the safe utilization of heavy metal-	foliar fertilizers may not provide effective passivation. Furthermore, the effectiveness of this method varies depending on the crop and soil type.

Remediation	Technical mechanism	Technical advantage	Technical defect
technology			
		contaminated farmland. The rapid	
		advancement of drone technology	
		has further reduced the cost of leaf	
		spraying techniques, leading to their	
		widespread adoption in agricultural	
		production.	