Wastewater-induced Microplastic Biofouling in Freshwater: Role of Particle Size and Flow Rate

Gaurav Bhardwaj¹, Malihe Mohammadiun¹, Carlos Saul Osorio Gonzalez¹, Satinder Kaur Brar¹, Shooka Karimpour^{1*}

¹Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, M3J 1P3, Ontario, Canada

*Corresponding Author: Shooka.karimpour@lassonde.yorku.ca

1. Synthetic Water Preparation

Table S1: Preparation of Synthetic Hard Reconstituted Water (1 L)

Step	Component	Quantity	Notes	
Initial Solution	Deionized Water	900 mL	Added to a cleaned Glass	
			Bottle.	
	Magnesium Sulphate	120 mg		
	(MgSO ₄)			
	Sodium Bicarbonate	192 mg		
	(NaHCO ₃)			
	Potassium Chloride (KCl)	80 mg		
			Aerate overnight to ensure	
			complete dissolution	
Calcium	Calcium Sulphate Dihydrate	120 mg	Dissolved in 100 mL	
Solution	(CaSO ₄ ·2H ₂ O)		deionized water	
Combination	Combined Solutions	1 L total	Mix thoroughly to obtain	
			homogeneous solution	

Figure S1: The preparation process of 1 L synthetic water based on the USEPA 2002 method.

Nutrient Source	Compound	Concentration	Purpose	References
Carbon Source	Glucose (C ₆ H ₁₂ O ₆)	1000 mg/L	Provides carbon for	1
			microbial growth	
Nitrogen	Ammonium	100 mg/L	Supplies ammonium	
Source	Chloride (NH4Cl)		ions (NH4 ⁺)	
Phosphorus	Diammonium	10 mg/L	Provides phosphate	2
Source	Phosphate ((NH4)		ions (PO4 ³⁻) for	
	2HPO4)		microbial growth	
C/N/P Ratio	100/10/1	-	Balances growth and	3
			inhibits excessive	
			EPS production	
Natural	Suwannee River	2 mg/L	Introduces complex	4
Organic Matter	NOM		organic compounds	
(NOM)				

Table S2: Nutrient Composition for Microbial Growth

NOM: Natural Organic Matter; EPS: Extracellular Polymeric substances

2. Microplastics Characteristics

PE microbeads of two distinct sizes—small (180-200 μ m) and larger (3-4 mm)—were purchased from Cospheric LLC (Somis, CA, USA). The microbeads were selected based on their high purity and availability in the desired size ranges.

2.1. Microscopic Characteristics

2.1.1. Optical microscopy

Figure S2: Optical microscopic images of polyethylene microbead (3-4mm), showing size

distribution.

Figure S3: Optical microscopic images of polyethylene microbead (180-200 μ m), showing size distribution.

2.1.2. Scanning Electron Microscopy

Figure S4: SEM images of polyethylene microbead (180-200 μm), showing size distribution and surface morphology.

2.2. Spectroscopic Characteristics

The Fourier Transform Infrared (FTIR) spectra of the polyethylene (PE) microbeads confirm their high purity and chemical stability. Key absorption peaks characteristic of PE, including the CH₂ asymmetric stretching at 2914 cm⁻¹, CH₂ symmetric stretching at 2847 cm⁻¹, the bending vibrations of CH₂ at 1472 cm⁻¹ and the rocking motions at 719 cm⁻¹. These stable peak positions and intensities shows that the microbeads used in our experiments were of high purity PE.

Figure S5: FTIR spectra for polyethylene microbead (180-200 µm).

Figure S6: Figure S5: FTIR spectra for polyethylene microbead (3-4mm).

3. Hydrodynamic calculations

Given the cylindrical flow channel dimensions:

Diameter = 0.076 m; Height = 0.08 m

Cross-sectional area = $\pi^*(d/2)^2 = 3.14^*(0.076/2)^2 = 0.004545 \text{ m}^2$

3.1. Average Flow velocity (v):

$$(\upsilon) = Q/A$$

• 65 ml/min

Flow velocity (v)= Q/A = $(6.5 \times 10^{-5} \text{ m}^3\text{/s}) / (0.004545 \text{ m}^2) = 0.238 \text{ m/s}$

• 50 ml/min

Flow velocity (v)= Q/A = $(5 \times 10^{-5} \text{ m}^3/\text{s}) / (0.004545 \text{ m}^2) = 0.11 \text{ m/s}$

• 35 ml/min.

Flow velocity (v)= Q/A =
$$(5 \times 10^{-5} \text{ m}^3/\text{s}) / (0.004545 \text{ m}^2) = 0.077 \text{ m/s}$$

The selected flow rates and corresponding average flow velocities were found to be within a range for mimicking typical outflow conditions in nearly stagnant freshwater bodies, such as lakes. Similar hydrodynamic conditions can be generated by wastewater treatment plant discharges, further validating the suitability of the chosen parameters for simulating such environments.

References

M. T. Sturm, K. Schuhen and H. Horn, *Sci. Total Environ.*, 2022, **806**, 151388.
M. R. Khan, M. Ray, L. Ray and A. K. Guha, 2016.
Rahman, 2013.
4W. Liu, S. A. Andrews, M. I. Stefan and J. R. Bolton, *Water Res.*, 2003, **37**, 3697–3703.