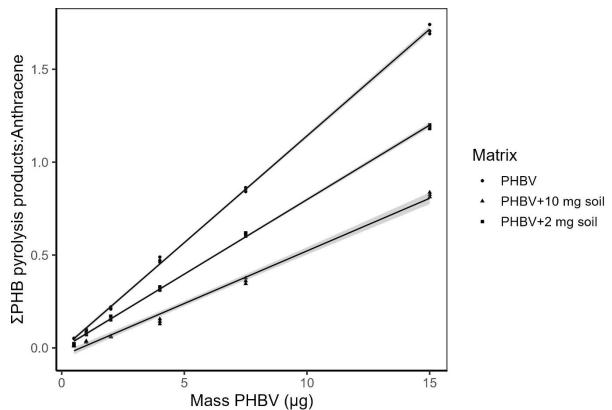
## **Supplementary Information**

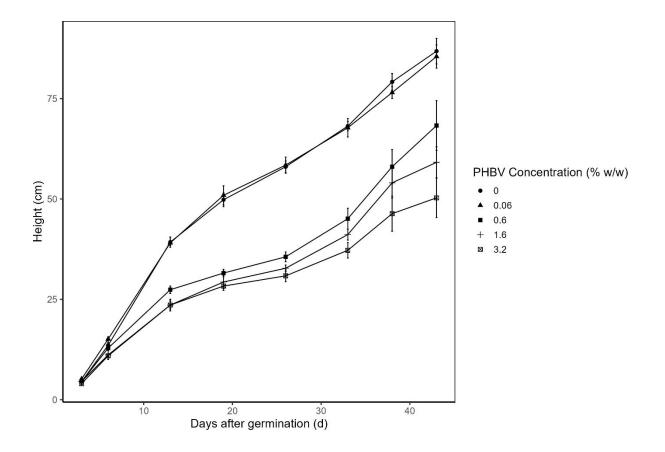
## Microbial degradation of bioplastic (PHBV) is limited by nutrient availability at high microplastic loadings

Michaela K. Reay<sup>a,1\*</sup>, Martine Graf<sup>b,1</sup>, Lucy M. Greenfield<sup>b</sup>, Rafael Bargiela<sup>c</sup>, Charles Onyije<sup>a</sup>, Charlotte E.M. Lloyd<sup>a,d</sup>, Ian D. Bull<sup>a</sup>, Richard P. Evershed<sup>a</sup>, Peter N. Golyshin<sup>c</sup>, David R. Chadwick<sup>a</sup> and Davey L. Jones<sup>b</sup>

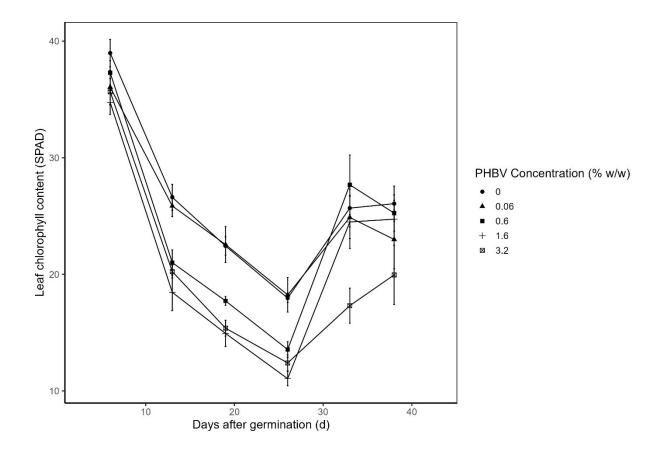
<sup>a</sup> Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK


<sup>b</sup> School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK

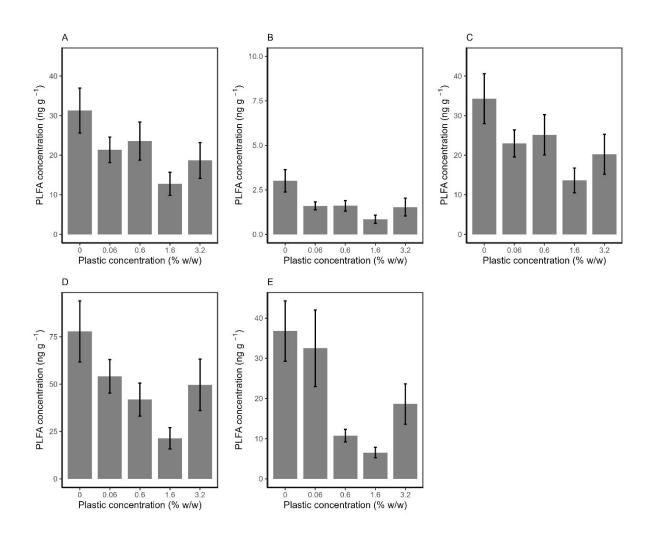
<sup>c</sup> Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd, LL57 2UW, UK


<sup>d</sup> School of Geography, University of Bristol, Bristol, BS8 1TS, UK

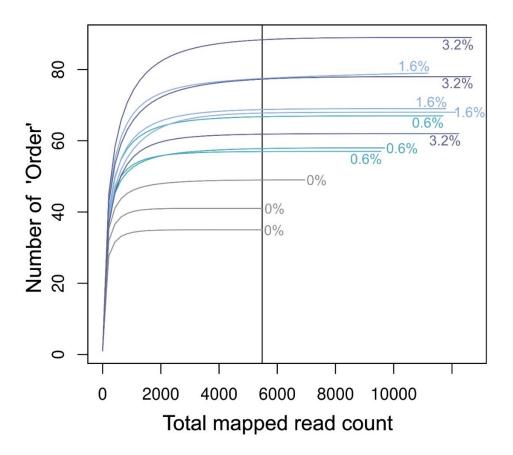
<sup>1</sup> These authors have contributed equally to this work.


\*Corresponding author: Michaela K. Reay, michaela.reay@bristol.ac.uk

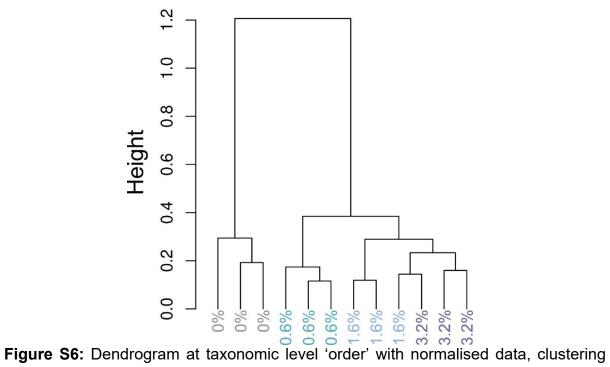



**Figure S1:** Effect of increasing soil mass (0, 2 and 10 mg) on the pyrolysis response of PHBV, based on the sum of PHB pyrolysis products methyl-3-butenoate, *cis*-methyl-2-butenoate and *trans*-methyl-2-butenoate, relative to the internal standard, anthrancene- $d_{10}$ , added to normalise for any differences between pyrolysis runs. Each concentration/soil mass combination were analysed in triplicate. The solid black line is the linear regression, and the grey shading represents the 95% confidence interval. The *r*<sup>2</sup> for the linear regressions are 0.9983, 0.9981 and 0.9916 for 0 mg, 2 mg and 10 mg of soil, respectively.

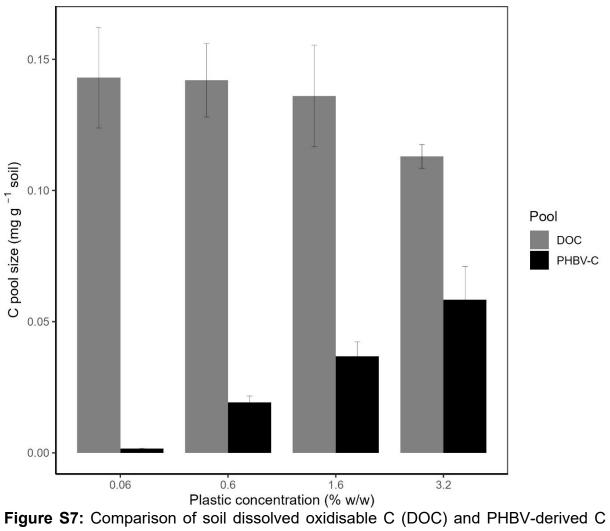


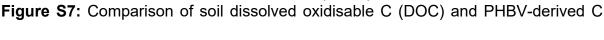

**Figure S2:** Height of maize plants following germination in response to exposure to varying PHBV microplastic concentrations. Values represent mean  $\pm$  S.E. (*n* = 5).




**Figure S3:** Chlorophyll content (SPAD) of maize leaves following germination in response to exposure to varying PHBV microplastic concentrations Values represent mean  $\pm$  S.E. (*n* = 5).




**Figure S4:** Concentrations of PLFAs in soil attributed to firmicute bacteria (A), actinobacteria (B), total Gram+ bacteria (firmicutes and actinobacteria) (C), Gram– (D) and fungi (E) in response to exposure to varying PHBV microplastic concentrations after 8 weeks. Concentrations were corrected for varying contribution of PHBV in soil. Values represent mean  $\pm$  SE (n = 5). Note differing scales for clarity.




**Figure S5:** Rarefaction curve with normalised data, demonstrating the minimum required total mapped read count for sufficient sample coverage against taxonomic level 'order'. Each curve represents a replicate for each of the PHBV concentrations in soil (% w/w).



**Figure S6:** Dendrogram at taxonomic level 'order' with normalised data, clustering samples according to bray distance and ward criterion The results are replicates for each of the PHBV concentrations in soil (% *w/w*).





released during degradation across the 8-week experimental period. Values are mean

**Table S1:** Properties of the soil used to establish the plant-soil mesocosm. All values are mean  $\pm$  SE (*n* = 3). Soil was also used in Graf et al. (2023).

| Soil property                                      | Mean ± SE   |
|----------------------------------------------------|-------------|
| рН                                                 | 6.1 ± 0.1   |
| EC<br>(μS cm <sup>-1</sup> )                       | 120 ± 4     |
| Clay<br>(%)                                        | 42.3 ± 0.9  |
| Silt<br>(%)                                        | 42.3 ± 0.3  |
| Sand<br>(%)                                        | 15.3 ± 0.9  |
| Extractable ammonium<br>(mg N kg <sup>-1</sup> )*  | 2.5 ± 0.5   |
| Extractable nitrate (mg N kg <sup>-1</sup> )*      | 12.4 ± 2.7  |
| Available phosphate<br>(mg P kg <sup>-1</sup> )*   | 41.5 ± 0.6  |
| Extractable potassium<br>(mg K kg <sup>-1</sup> )* | 165.3 ± 4.3 |

EC, electrical conductivity. \*data expressed on a dry weight basis.