Supplementary Information for

Membrane electrode assembly type cell designed for selective CO production from bicarbonate electrolyte and air containing CO_2 mixed gas

Akina Yoshizawa,^a Manabu Higashi^a Akihiko Anzai^a and Miho Yamauchi^{a,b,c,d}*

^a Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.

^b Advanced Institute for Materials Research (WPI-AIMR), Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

^c Research Center for Negative Emissions Technologies (K-NETs), Kyushu University Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.

^d International Institute for Carbon-Neutral Energy Research (WPI-I²CNER), Kyushu University Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.

*Corresponding author:

Figure S1. System configuration of conventional three-chamber cell.

Figure S2. GC charts for the analysis of H_2 and CO produced in CO₂RR using (a) CO₂ and (b) Air-CO₂ on a conventional carbon based flow cell.

Figure S3. Faradaic efficiency (FE) in CO₂RR using 1.0 M BCS on a MEA cell with a carbon-based GDE.

Figure S4. XRD diffraction patterns of the Ag NP catalyst on MEA before and after CO_2RR using 1.0 M BCS.

	before reaction	after reaction
crystal system	cubic	cubic
space group	Fm-3m	Fm-3m
a (Å)	4.088	4.089
V (Å ³)	68.32	68.40
crystallite size (nm)	26.4	25.2
T (K)	298	298
GOF	2.32	3.09
2θ range	30-80°	30-80°
wavelength (Å)	1.5405	1.5405

Table S1. Crystallographic data and Rietveld refinement parameters of the Ag NP catalyst on MEA before and after CO_2RR using 1.0 M BCS.

Figure S5. Faradaic efficiency (FE) and current density as a function of cell voltage for CO_2RR on Ag MEA-Cell in (a) 1.0M BCS and (b) 3.0M BCS.

gas	pН	
1M KOH (before bubbling)	13.9	
100% CO ₂	7.55 ^a	
Air-CO ₂	7.90^{a}	

^a The pH of the 1M KOH solution after CO₂ capture. In a typical experiment, the pH was measured with 100 ml of KOH solution after

purging with CO₂ containing gas at 30 sccm overnight.

Figure S6. Current densities in CO_2RR using 1M BCS and 100 % CO_2 on Ag MEA-Cell.

Figure S7. (a) Current-voltage curves and (b) Faradaic efficiency for CO (FE_{CO}) and H_2 production (FE_{H2}) in CO₂RR using pure CO₂ on Ag MEA-Cell with Ag catalysts including different ratio of Nafion solution.

The Nafion ionomers contained in the Ag catalyst ink enhance transport of CO₂ and H⁺ at the catalytic sites.^{45, 46} Thus, we examined the optimal loading amount of the Nafion ionomer from 5 to 30 % and found that MEAs with 10 to 20 wt% of Nafion loading to the amount of Ag on Ag-MEA (2.5 mg/cm²) showed higher *J* values, which were almost double than those on MEAs with 5 or 30 wt% Nafion loading in the voltage range from 2.0 to 2.4 V (Figure S6a). The resistances for CO₂RR using MEAs with 5 or 30 % Nafion loading were measured to be 6.86 and 2.92 Ω , respectively, and the resistances were much higher than that with MEAs with 10 or 20 % Nafion loading (0.99 and 1.97 Ω). The lower *J* with MEAs employing 5 or 30 % Nafion loading is possibly assigned to the higher resistances of the MEAs. MEAs characterized with 10 to 20 wt% of Nafion loading to the Ag amount showed similar FE_{CO}, more than 80% between 2.0 and 2.3 V. At 10 wt% of the optimal Nafion content, we achieved FE_{CO}=97% at 2.3 V and *J*=100 mA/cm² (Figures S6b and S7a).

Figure S8. Faradaic efficiency (FE) and current density in CO₂RR using (a) 100% CO₂,
(b) N₂-CO₂ and (c) Air-CO₂ on Ag MEA-Cell with10% Nafion loading MEA.

Feedstock	Catalyst	Membrane	FEco	J	$J_{ m co}$	Ref
				(mA/cm^2)	(mA/cm ²)	
Sat. CO ₂ gas	Ag	CEM	>99%	73	73	This work
1.0 M KOH						
Sat. CO ₂ gas	Ag	CEM	93%	105	97	This work
1.0 M KOH						
2M KHCO ₃	Ag	CEM	99%	52	51	This work
3M KHCO ₃	Ag	BPM	62%	200	124	S 1
3M KHCO ₃	Ag	BPM	82%	100	82	S 1
3M KHCO ₃	Ag	BPM	59%	100	59	S2
Sat. N_2 gas	Ag	BPM	37%	100	37	S 3
3.0 M KHCO ₃						
Sat. CO ₂ gas	Ag	BPM	35%	100	35	S 3
3.0 M KHCO ₃						
1.25 M HCO ₃ ⁻	Ag	CEM	18%	104	19	S4

Table S3. Comparison of total current density (J), partial current density (J_{CO}) and FE_{CO} for CO production in state-of-the-art CO₂RR using BCS combined CCU systems.

References

S1 E. W. Lees, M. Goldman, A. G. Fink, D. J. Dvorak, D. A. Salvatore, Z. Zhang, N. W.
X. Loo, C. P. Berlinguette, *ACS Energy Lett.*, 2020, 5, 2165–2173.

S2 Z. Zhang, E.W. Lees, F. Habibzadeh, D. A. Salvatore, S. Ren, G. L. Simpson, D. G. Wheeler, A. Liu, C. P. Berlinguette, *Energy Environ. Sci.*, 2022, **15**, 705–713.

S3 T. Li, E. W. Lees, M. Goldman, D. A. Salvatore, D. M. Weekes, C. P. Berlinguette, *Joule*, 2019, **3**, 1487–1497.

S4 L. A. Diaz, N. Gao, B. Adhikari, T. E. Lister, E. J. Dufek, A. D. Wilson, *Green Chem.*, 2018, 20, 620–626.