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Figure S1: Schematic of Perovskite solar cells (a) Device architecture, and (b) Energy-Band 
diagram of the device. The energy band positions have been taken from various references.1-5

Table S1: Systematic exploration of solvent ratio and anti-solvent selection in conjunction 

with Two and Three-Step spin coating parameters for the deposition of Perovskite Films on 

both SnO2-coated FTO substrates and Glass substrates.

Note: The perovskite Films formed under RH = 20-28%, Temperature = 24-30 ℃.

Solvent FAI: PbI2 
Molar 
Ratio

Anti-solvent Annealing 
Temperature 

( )℃

Formation of 𝜶-FAPbI3
With spin coating 

parameters

DMF: 
DMSO (9:1)

1.5 M
1 M

0.7 M

Chlorobenzene

Toluene

Ethyl Acetate

150-170 2-step; N

3-step; N

DMF: 
DMSO (4:1)

1.5 M
1 M

0.7 M

Chlorobenzene
Toluene

Ethyl Acetate

150-170 2-step; N

3-step; N
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DMF: 
DMSO (3:1)

1.5 M
1 M

0.7 M

Chlorobenzene
Toluene

Ethyl Acetate

150-170 2-step; N

3-step; Y only with 0.7M 
ratio of FAI: PbI2 but not 

with Ethyl Acetate

N: Perovskite film not formed; Y: Perovskite film formed.

Table S2: Optimization of spin coating parameters, anti-solvent dripping duration, anti-solvent 

volume, and annealing temperature for the precision fabrication of Perovskite Films on Glass 

substrates and SnO2-coated FTO substrates.

Spin 
coating 
Steps

Spin coating 
parameters

Anti-
solvent 

Dripping 
During 

the 
deposition 

process

Anti-solvent Temper
ature 
( )℃

Formation of -FAPbI3𝛼

2-step 1200 rpm, 15 sec

5000 rpm, 30 sec

15th sec of 
second 

step

Chlorobenzene

(250-300 L)𝜇

150-170 Not formed

2-step 1200 rpm, 15 sec

5000 rpm, 30 sec

15th sec of 
second 

step

Toluene

(250-300 L)𝜇

150-170 Not formed

3-step 500 rpm, 5sec

3500 rpm, 5 sec

5000 rpm, 30 sec

Ending of 
second 

step

Chlorobenzene

(250-300 L)𝜇

150-170 Very poor-quality film 
formed

3-step 500 rpm, 5sec

3500 rpm, 5 sec

5000 rpm, 30 sec

Ending of 
second 

step

Toluene

(250-300 L)𝜇

150-170 Poor quality film formed

3-step 500 rpm, 5sec

3500 rpm, 5 sec

5000 rpm, 30 sec

During 
acceleratio

n of 3rd 
step

Toluene

(250-300 L)𝜇

150-170 Poor quality film formed 
but slide improvement 

from previous one

3-step 500 rpm, 5sec

3500 rpm, 5 sec

5000 rpm, 30 sec

Starting of 
third step

Toluene

(250-300 L)𝜇

150-170 Poor quality film formed 
but slide improvement 

from previous one

3-step 500 rpm, 5sec

3500 rpm, 5 sec

5000 rpm, 30 sec

7th sec of 
third step

Toluene

(250-300 L)𝜇

150-170 Poor quality film formed 
but slide improvement 

from previous one

3-step 500 rpm, 5sec 12th sec of 
third step

Toluene 150-170 Poor quality film formed 
but slide improvement 



3500 rpm, 5 sec

5000 rpm, 30 sec

(250-300 L)𝜇 from previous one

3-step 500 rpm, 5sec

3500 rpm, 5 sec

5000 rpm, 30 sec

15th sec of 
third step

Toluene

(250-300 L)𝜇

150-170 Good quality film formed

3-step 500 rpm, 5sec

3500 rpm, 5 sec

5000 rpm, 30 sec

15th sec of 
third step

Toluene

(250 L)𝜇

150-170 Good quality film formed 
slide improvement from 

previous one

3-step 500 rpm, 5sec

3500 rpm, 5 sec

5000 rpm, 30 sec

15th sec of 
the third 

step

Toluene

(250 L)𝜇

150 Very Good quality film 
formed

3-step 500 rpm, 5sec

3500 rpm, 5 sec

5000 rpm, 30 sec

18th sec of 
the third 

step

Toluene

(250 L)𝜇

150 Very poor-quality film 
formed

Figure S2: Phase transformation images from intermediate to FAPbI3 phase with different 
time intervals after reaching 150 . ℃

Table S3: Theoretical stress calculation at various temperatures, while perovskite solution 
temperature was constant at 70 .℃



𝐸𝑃
1 ‒ 𝜐𝑃

𝛼𝑠 ‒ 𝛼𝑃 𝛼𝑔 ‒ 𝛼𝑃 Substrate 
Temperatur

e
( )℃

∆𝑇 Stress in 
Sample S1

(MPa)

Stress in 
Sample S2

(MPa)

30 +40 +63.43 +6.34
40 +30 +47.57 +4.75
50 +20 +31.71 +3.17
60 +10 +15.85 +1.58
70 0 0 0

15.857 
GPa

10-5 K-1 10-4 K-1

80 -10 -15.85 
(Compressive 

stress)

-1.58
(Compressive 

stress)

Figure S3: Stress analysis of Glass/FTO/SnO2/FAPbI3 based film using XRD



Figure S4: Stress analysis of Glass/FAPbI3 based film using XRD.

Table S4: Mechanical properties and XRD peak at (001) of FAPbI3 film.6-8

Plane (001)

2𝜃 14.1

Poisson's ratio 0.3

Young Modulus 11.1 GPa



Figure S5: Shows the atomic structure model of the FAPbI3/SnO2 interfacial mismatch 
(dotted lines) at the different axis, (a) 2D structure in the b-c direction, (b) 3D structure, and 

(c) 2D structure in the a-b direction.
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Figure S6: XPS spectra of FAPbI3 film; (a) Pb 4f, (b) I 3d, (c) N1s, and (d) C1s.

Sum Spectrum

(b)(a)

Figure S7: EDS Spectral analysis; (a) EDS sum spectrum of FAPbI3, and (b) Elemental 
mapping of C, N, Pb and I in the perovskite structure



Figure S8: Stability of 𝜶-FAPbI3 film at different substrates; (a) At 0-hour (fresh film), (b) 
film after 6 hours, and (c) film after 20 hours.
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S.1.3

Figure S9:  XPS spectra of Pb 4f, I 3d (S1) fresh film, and (S1.3) three months aged sample.



S1
S.1.3

Figure S10: XPS survey of; (S1) fresh film, and (S1.3) three months aged sample.

Figure S11: XRD pattern and SEM images (top-view) of 𝜶-FAPbI3 film on Glass/FTO/SnO2 

coated substrates; (S1) fresh film, and (S1.3) three months aged sample.

Table S5: Average experimental data for the photovoltaic performance of 25 devices in reverse 
direction.

JSC (mA/cm2) VOC (V) FF (%) Efficiency (%)Device data of 
25 cells 25.7 0.5± 1.031 0.024± 68.2 5.4± 18.26± 2.2
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