Electronic Supplementary Material (ESI) for Energy Advances. This journal is © The Royal Society of Chemistry 2024

Electronic supplementary information

Glucose-Based Highly-Porous Activated Carbon Nano Sphere (g-ACNS) for High Capacity Hydrogen Storage

Fan-Gang Tseng ^{a,b,c,d}, Dinesh Bhalothia ^a, Kuan-Hou Lo ^a, Cheng-Huei Syu ^a, Ying-Cheng Chen ^a, Amita Sihag ^a, Che-Wen Wang ^a, Hsin-Yi Tiffany Chen^{a,e*}, Tsan-Yao Chen^{a*}

^aDepartment of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan

^b Frontier Research Center on Fundamental and Applied Sciences of Matters

^c Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan

^d Research Center for Applied Sciences, Academia Sinica, Taiwan

^e College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan

*Corresponding Author(s):

Tsan-Yao Chen

Email: chencaeser@gmail.com
Tel: +886-3-5715131 # 34271

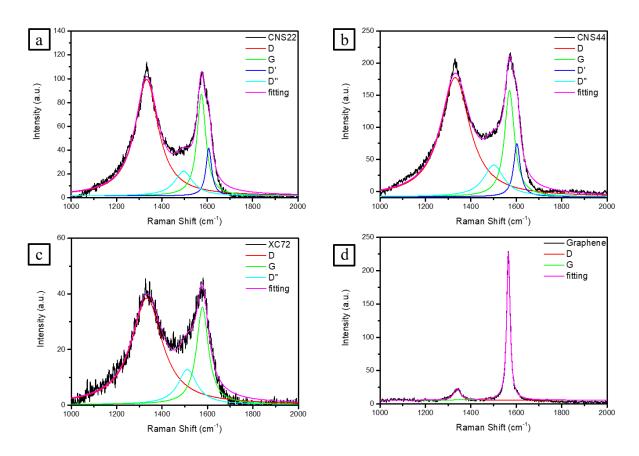
FAX: +885-3-5720724

Hsin-Yi Tiffany Chen

Email: hsinyi.tiffany.chen@gapp.nthu.edu.tw

1. Benchmark of carbon-based materials for H2 storage application

Table S1: Hydrogen storage capacity for different carbon materials.


Sample	Hydrogen capacity	Surface Area	Retention	Pressure	Temp.	Ref.
	wt%	m ² /g		MPa	K	
Nano Fiber	0.4	150		4	77	19
Graphene	0.34	20.5		10	77	This work
A-NF	0.6	265		4	77	19
XC72	1.39	215.6		10	77	This work
SWNTs	2			10	80	20
MWNT	5			10	300	38
AX21	4.8	2513		4	77	19
KUA6[c]	5.6	3808		4	77	19
AC-K5	7.08	3190		2	77	21
g-ACNS	5.04	2291-2555	100%	10	77	This work

[[]a]D band (1350 cm $^{-1}$) and G band (1580 cm $^{-1}$) Ratio, higher value (I_D/I_G) represents more surface sp2 structures

[[]b] High Surface Area and KOH Activated Carbon Made from Anthracite Coal

[[]c] Mixed Activated Carbon (abbreviated as AC, chemically pure, Shanghai Dahe Chemical Reagent Ltd.) and KOH for Calcination at 750°C under Argon atmosphere (KOH: AC = 1:5)

2. Raman analysis on the structural defects of CNs and reference samples

Figure S1. The fitting curves of Raman spectra for carbon nanosphere (CNS22 and CNS24), commercial active carbon (XC-72) and Graphene.