Electronic Supplementary Information (ESI)

Anionic Exchange Membrane Water Electrolysis over Superparamagnetic Ferrites

*Tiago Fernandes,^a Ramsundar Mohan,^a Laura Donk,^b Wei Chen,^b Chiara Biz,^c Mauro Fianchini,c,d Saeed Kamali,e,f Siavash Mohammad Alizadeh,^a Anna Kitayev,^g Aviv Ashdot,^g Miles Page,^g Laura M. Salonen,i,a Sebastian Kopp,^h Ervin Tal Gutelmacher,^g José Gracia,^c Marta Costa Figueiredo,^b and Yury V. Kolen'koa,**

a.International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal

b.Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands

c.MagnetoCat SL, Calle General Polavieja 9, 3Izq, Alicante 03012, Spain

d.Departamento de Química Física, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, E-03080 Alicante, Spain

e.Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN, United States

f.Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN, United States

g.HYDROLITE, Hatohen 2, Caesarea 3088900, Israel

h-Hydrogen Technologies, Fraunhofer Institute for Solar Energy Systems ISE, Freiburg 79110, Germany

^{i.}CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310 Vigo, Spain

* yury.kolenko@inl.int

TABLES

Table S1. Average particle diameters, calculated lattice parameters, specific surface area and optical bandgap of the $CoFe₂O₄$, $NiFe₂O₄$, $ZnFe₂O₄$, and $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O₄$ $(4A_{1/4}Fe_{2.2}O_4)$ catalysts synthesized by coprecipitation method followed by calcination and ball milling.

Sample	Mean crystallite size* (nm)	Calculated lattice parameters $(a = b = c) (\mathring{A})^*$	Mean particle radius $(nm)**$	Specific surface area $S_{\rm BET}$ $(m^2/g)^{***}$	Optical bandgap (eV)
CoFe ₂ O ₄	34.0^+	8.3416	20 ± 7	65	1.48
	32.1°	8.3432^{\bullet}			
NiFe ₂ O ₄	24.9^+	8.3445	26 ± 6	42	1.58
	28.2^{\bullet}	8.3461 [*]			
$\mathbf{ZnFe}_2\mathbf{O}_4$	20.9^+	8.4437	18 ± 4	54	1.70
	23.8°	8.4629 [*]			
$4A_{1/4}Fe_{2,2}O_4$	25.9^{+}	8.3832	21 ± 5	84	1.51

* Calculated from the collected XRD data (Scherrer Equation/•Rietveld Refinement).

** Estimated by the analysis of TEM images (Figure S3).

*** Estimated by N_2 physisorption.

Table S2. Summary of the refined Mössbauer parameters (centroid shift, δ , quadrupole shift, ε , magnetic hyperfine field, B_{hf} , magnetic hyperfine field distribution, σ , intensity, *I*) for spectra collected at 6 K from CoFe_2O_4 , NiFe_2O_4 , ZnFe_2O_4 , and $\text{Zn}_{0.2}\text{Mn}_{0.2}\text{Ni}_{0.2}\text{Co}_{0.2}\text{Fe}_{2.2}\text{O}_4$ catalysts synthesized by coprecipitation method followed by calcination and ball milling. Estimated errors are \pm 3% in *I*, \pm 0.005 mm/s in δ and ε , and \pm 0.2 T in B_{hf} and σ .

	Parameters	CoFe ₂ O ₄	NiFe ₂ O ₄	$\mathbf{ZnFe}_2\mathbf{O}_4$	$Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$
	δ_1 (mm/s)	0.524	0.468	0.452	0.627
	$B_{\text{hfl}}(T)$	52.2	54.9	50.9	52.3
\mathbf{Q}_1	$\sigma_1(T)$	1.8	0.7	1.2	1.0
	ε_1 (mm/s)	0.007	-0.004	0.069	0.042
	I_1 (%)	46	46	48	23
	δ_2 (mm/s)	0.328	0.361	0.442	0.337
	$B_{\text{hf2}}(T)$	50.7	50.7	50.1	51.5
\mathbf{Q}_2	$\sigma_2(T)$	1.2	0.8	1.2	1.0
	ε_2 (mm/s)	0.004	0.052	-0.127	-0.003
	$I_2(%)$	32	39	32	45
	δ_3 (mm/s)	0.428	0.367	0.452	0.447
	$B_{\rm hf3}$ (T)	48.7	50.2	46.3	49.8
\mathbf{Q}_3	$\sigma_3(T)$	3.3	0.7	3.6	2.8
	ε_3 (mm/s)	-0.026	-0.138	-0.006	-0.030
	$I_3(%)$	22	15	20	32
	Absorption $(\%)$	8.0	7.3	6.9	7.4

Table S3. Cation distributions within the spinel crystal structure estimated based on the 6 K Mössbauer data collected from the $CoFe₂O₄$, $NiFe₂O₄$, $ZnFe₂O₄$, and $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ catalysts synthesized by coprecipitation method followed by calcination and ball milling. $A =$ tetrahedral sites, $B =$ octahedral sites of the AB_2O_4 spinel structure.

Table S4. Magnetic properties of the CoFe₂O₄, NiFe₂O₄, ZnFe₂O₄, and $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ catalysts synthesized by coprecipitation method followed by calcination and ball milling.

Catalyst	M_s (emu/g _{sample})	$M_{\rm r}$ (emu/g _{sample})	Hc (Oe)
CoFe ₂ O ₄	38.5	15.9	600
NiFe ₂ O ₄	44.2	5.7	
$\rm ZnFe2O4$	15.0	0.0	
$\rm Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$	50.3	3.7	40

Table S5. ICP-OES analysis of detailing elemental composition of the catalysts explored in this work.

Catalyst	Support	Overpotential η_{10} @.10mA/cm ²	Tafel slope (mV/dec)	Electrolyte	Ref.
H_2 -treated NiFe ₂ O ₄	Glassy carbon	389 mV	64	1 M KOH	$[1]$
$CoFe2O4$ with carbon spheres	Glassy carbon	390 mV	58	1 M KOH	$[2]$
Dual-phase MnCo ₂ O ₄	Glassy carbon	327 mV	79	1 M KOH	$\boxed{3}$
Mesoporous NiFe ₂ O ₄ nanorods	Glassy carbon	342 mV	44	1 M KOH	$\overline{[4]}$
Mesoporous NiFe ₂ O ₄	Glassy carbon	410 mV	50	1 M KOH	$[5]$
ZnFe ₂ O ₄ NPs on N-doped graphene	Nickel foam	240 mV	64	1 M KOH	$[6]$
MnFe ₂ O ₄	Glassy carbon	600 mV	116	0.1 M KOH	$[7]$
$CuFe2O4$, NiFe ₂ O ₄ , CoFe ₂ O ₄	Nickel foam	369 mV ($CuFe2O4$) 386 mV (Ni $Fe2O4$) 448 mV ($CoFe2O4$)	76 ($CuFe2O4$) 86 (NiFe ₂ O ₄) 148 ($CoFe2O4$)	1 M KOH	[8]
Mesoporous nanostructured $A\text{Fe}_2\text{O}_4$ (A = Co, Mn, Ni)	Glassy carbon	412 mV ($CoFe2O4$) 412 mV ($NiFe2O4$) 582 mV ($MnFe2O4$)		0.1 M KOH	$[9]$
$CoFe2O4$ nanocubes on a N- doped graphene oxide	Glassy carbon	320 mV	56	1 M KOH	$[10]$
$Co0.8Zn0.2Fe2O4$	Ni foam	317 mV	43	1 M KOH	$[11]$
$Ni0.5Cu0.5Fe2O4$ anchored at S- doped $g - C_3N_4$	316 SSL mesh	250 mV	45	1 M KOH	$[12]$
$Co_{0.5}Ni_{0.5}Fe_2O_4$	Ni foam	210 mV	35	1 M KOH	$[13]$
$(NiCoMnCu)$ ₁ Fe ₁ Co ₁ O ₄	Carbon paper	460 mV		1 M KOH	$[14]$
(CoFeNiCrMn) ₃ O ₄	FTO	307 mV	30	1 M KOH	$[15]$
$(Co_{0.2}Mn_{0.2}Ni_{0.2}Fe_{0.2}Zn_{0.2})Fe_2O_4$	CFP	326 mV	54	1 M KOH	$[16]$
$(CoNIMnZnFe)_{3}O_{3,2}$	CFP	336 mV	48	1 M KOH	$[17]$
CoFe ₂ O ₄	Glassy carbon	484 mV	103	1 M KOH	This work
NiFe ₂ O ₄	Glassy carbon	455 mV	108	1 M KOH	This work
$Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$	Glassy carbon	432 mV	86	1 M KOH	This work

Table S6. Comparison of alkaline OER activity for several reported simple, as well as highentropy spinels and metal oxides.

Anode material	Membrane/ Supporting electrolyte	Loading Cell size	Performance $\omega \sim 2V$	Electrolyte	Stabilit y test	Ref
NiFe ₂ O ₄	Fumasep® FAA3-50	3 mg/cm ² 5 cm^2	2.7 A/cm ² 60 \circ C	1 M KOH	70h	$[18]$
NiFeO _x	SustainionTM X37-50	2.5 mg/cm^2 5 cm^2	0.650 A/cm ² 50 °C	1 M KOH	500 _h	$[19]$
NiFe ₂ O ₄	Fumasep® FAA3-50	3 mg/cm ² 5 cm^2	2.5 A/cm ² 60 °C	1 M KOH	100 _h	$[20]$
NiMn ₂ O ₄	Fumasep® FAA3-50	3 mg/cm ² 5 cm^2	0.530 A/cm ² 80 °C	1 M KOH	$1000\ \mathrm{h}$	$[21]$
$Ce0.2 MnFe1.8O4$	Fumasep® FAA-3-PK- 130	3.5 mg/cm^2 4 cm^2	0.300 A/cm ² (Q(2.1.8 V)) 25° C	1 M KOH	100 _h	$[22]$
$Ni_{0.75}Fe_{2.25}O_4$	X37-50 Grade T	4 mg/cm^2 7.1 cm^2	2.5 A/cm^2 (Q(1.9V)) 45 °C	1 M KOH	21 _h	$[23]$
NiFe-oxide	Fumasep® FAA3-50	5 cm^2	3.25 A/cm^2 at 2.2 V 60° C	1 M KOH	100 _h	$[24]$
NiCo ₂ O ₄ /CNF	Fumasep® FAA3-50	3 mg/cm ²	0.303 A/cm ² at 1.8 V 50° C	6 M KOH	\blacksquare	$[25]$
$Ni0.6Co0.2Fe0.2$	Fumapem-3-PE-30	5 mg/cm^2 25 cm^2	2 A/cm ² 50° C	1 M KOH	50 _h	$[26]$
$Zn_{0,2}Mn_{0,2}Ni_{0,2}Co_{0,2}Fe_{2,2}O_4$	Proprietary Hydrolite Membrane B 70 µm	3 mg/cm^2 4 cm^2	1.5 A/cm ² 80 °C	1 M KOH	20 _h	This work
NiFe ₂ O ₄	Proprietary Hydrolite Membrane B 70 µm	3 mg/cm^2 4 cm^2	1.9 A/cm ² 80 °C	1 M KOH	20 _h	This work

Table S7. Comparison of full-cell AEMEL performance of several spinels reported to date.

FIGURES

Figure S1. XRD patterns for CoFe_2O_4 (ICDD no. 01-090-3471, cubic, $Fd-3m$), NiFe_2O_4 (ICDD no. 01-078-3741, cubic, *Fd*-3*m*), ZnFe2O⁴ (ICDD no. 04-008-5691, cubic, *Fd*-3*m*), and $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ catalysts synthesized by coprecipitation method followed by calcination and ball milling.

Figure S2. Room temperature Raman spectra for CoFe₂O₄, NiFe₂O₄, ZnFe₂O₄, and $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ catalysts synthesized by coprecipitation method followed by calcination and ball milling.

Figure S3. Histograms of particle-size distribution as determined from several TEM images of $CoFe₂O₄$, $NiFe₂O₄$, $ZnFe₂O₄$, and $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O₄$ catalysts synthesized by coprecipitation method followed by calcination and ball milling, *n* = 100. The curve shows a fit using the Gaussian distribution function. The mean particle size is indicated in the respective plot where the error is the standard deviation.

Figure S4. Representative SEM and SEM−EDX data of CoFe2O4, NiFe2O4, ZnFe2O4, and $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ catalysts synthesized by coprecipitation method followed by calcination and ball milling.

Figure S5. HAADF-STEM image and the corresponding EDX elemental mapping of $\widehat{\text{CoFe}}_2\text{O}_4$ (top), NiFe₂O₄ (middle), and ZnFe₂O₄ (bottom) catalysts.

Figure S6. HAADF-STEM image and the corresponding EDX elemental mapping of the compositionally complex $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ ferrite catalyst.

Figure S7. XPS survey data for the key constituting elements of CoFe₂O₄, NiFe₂O₄, ZnFe₂O₄, and $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ catalysts synthesized by coprecipitation method followed by calcination and ball milling.

Figure S8. UV/Vis diffuse reflectance spectra of CoFe₂O₄, NiFe₂O₄, ZnFe₂O₄, and $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ catalysts synthesized by coprecipitation method followed by calcination and ball milling, together with the corresponding Tauc plots (inset) used for the determination of the optical band gap.

COMPUTATIONAL STUDY ON SPINEL FERRITES

Computational method

The study was performed by periodic DFT calculations using QUANTUM ESPRESSO 6.8 (QE) GPU-enabled version.^[27] The DFT+U+J approach^[28] was applied to account for the strong correlation among the electrons in the $3d$ -metals (U = 2.5 eV, J = 0.4 eV, U_{eff} = 2.5 eV) during the geometry optimization of the lattice parameters (atomic positions $+$ cell). U_{eff} follows the Dudarev *et al* formulation^[28c]. All the calculations were carried out with spin polarization and by applying the collinear magnetic model (i.e., all atomic magnetic moments are aligned with the z-axis), unless specified. The exchange−correlation energy was calculated within the generalized gradient approximation using the optB86b functional.^[29] The electron-ion interactions for the atoms were described by the Ultrasoft (US) method developed by Vanderbilt.[30] The US pseudopotentials used in this work were generated by using the atomic package *ld1.x* included in the Quantum ESPRESSO distribution (https://www.quantum-espresso.org/documentation/package-specific-documentation/). The pseudopotentials were recompiled for optB86b from Andrea Dal Corso's schemes (proposed for PBE and PBEsol) in pslibrary^[31] (https://github.com/dalcorso/pslibrary.git). The kinetic energy cut-offs used in optimization were set to 60 Ry for wavefunction and 600 Ry for charge density and potential. A single point energy refinement of optimized structures was carried out for each of the most stable entries. The Monkhorst–Pack scheme was chosen for the integration in the reciprocal space.[32] The reciprocal space of all investigated structures was generally sampled with a 0.20 Å^{-1} -spaced k-points grid for optimizations and energy refinements. The projectors for U on localized orbitals were based on Löwdin orthogonalized atomic wavefunctions orbitals ("ortho-atomic" option in QE). Marzari-Vanderbilt-Devita-Payne smearing^[33] was used for all the calculations. The computational studies presented in this article are carried out at 0 K and under vacuum condition.

Computational remarks

The computational models were built based on the cation distribution data obtained from Mössbauer spectroscopy (see Table S3). The space groups are reported in Hermann–Mauguin symmetry symbols. CS and C indicate the Crystallographic System and the cubic symmetry, respectively. The cell parameters are indicated as a;b;c (in Å), α ; β ; γ (in α) and the cell volume is in Å. Average M-O bond distances are reported in Å, where M is the $3d$ -transition metal in the octahedral (O_h) or tetrahedral (T_d) site. Magnetic orderings are labelled as: FM (ferromagnetic), AFM (antiferromagnetic), ferri (ferrimagnetic), NM (non-magnetic, non-spinpolarized calculation), while the types of conduction are indicated as M (metallic), HM (half metallic), S (semiconduction) and I (insulator). For all entries only the spin components of the magnetic moments (μ , in μ _R) are reported.^[34]

Pictures and surfaces are created using VESTA^[35] program. Mn, Fe, Co, Ni, Zn, and O are colored in pink, brown, blue, silver, dark grey, and red, respectively. The isosurfaces in the density spin plots are shown at 0.004 a_{0}^{-3} (a_{0} is the Bohr radius). Density of states (DOS) are generated with Gnuplot v. 5.4[36] ([http://www.gnuplot.info/\)](http://www.gnuplot.info/).

Computational data tables

CoFe_2O_4 **([Co**_{0.375}**Fe**_{0.625}]^A{Co_{0.625}**Fe**_{1.375}}B_{O₄)}

Table S8. Optimized computational data on partially inverse CoFe_2O_4 bulk ($T = 0$ K). The most stable ground state is referred to as 0.00 eV. The experimental lattice parameters are $a = b = c = 8.3416$ Å, as reported in Table S1.

Figure S9. Optimized cell (right) and spin density plot (left) of ferrimagnetic (Ferri 1) bulk CoFe_2O_4 partially inverse spinel (yellow = spin up, cyan = spin down).

Figure S10. Density of states (DOS) between -3 eV and 3 eV of ferrimagnetic (Ferri 1) bulk CoFe₂O₄ partially inverse spinel.

$NiFe₂O₄$ ([Fe]^{*A*}{NiFe}^{*B*}O₄)

Table S9. Optimized computational data on <u>inverse spinel</u> NiFe₂O₄ bulk ($T = 0$ K). The most stable ground state is referred to as 0.00 eV. The experimental lattice parameters are $a = b = c = 8.3445$ Å, as reported in Table S1.

\mathbf{CS} (C)	Magn. Struc. type	ΔE (eV)	Cell parameters (\AA)	Cell volume (\AA^3)	Average M-O distance (\AA)	Abs. Averag e Mag. Mom. (μ_B)	
	NM	39.70	$a=8.06116$; $b=7.81116$; $c=8.08496;$ $\alpha = 89.70^{\circ}$; $\beta = 90.15$; $\gamma = 89.89^{\circ}$	509.08	1.81 (Fe-O T_d) 1.93 (Fe-O Oh) 1.96 (Ni-O O_h)		
	FM		No convergence				
Fd-3m	AFM	1.17	$a=8.34447$; $b=8.32816$; $c=8.35281;$ α =90.36°; β =90.15°; γ =90.46°	580.44	1.90 (Fe-O T_d) 2.02 (Fe-O O_h) 2.05 (Ni-O O_h)	4.0 (Fe) 1.6 (Ni)	
	Ferri	0.00	a=8.33734; b=8.30763; $c = 8.34308$; α =90.00°; β =90.08°; γ =90.06°	577.87	1.89 (Fe-O T_d) 2.02 (Fe-O O_h) 2.04 (Ni-O O_h)	4.0 (Fe) 1.5(Ni)	

Figure S11. Optimized cell (right) and spin density plot (left) of ferrimagnetic bulk $NiFe₂O₄$ inverse spinel (yellow = spin up, cyan = spin down).

Figure S12. Density of states (DOS) between -3 eV and 3 eV of ferrimagnetic bulk $NiFe₂O₄$ inverse spinel.

N **iFe**_{2-*x*}**O**₄ (*x* = 0.125) $(Ee)^{A}$ {NiFe_{0.875}}^BO₄)

Table S10. Optimized computational data on <u>inverse spinel</u> NiFe_{2–*x*}O₄ ($x = 0.125$) bulk $(T = 0 \text{ K})$. The most stable ground state is referred to as 0.00 eV . The experimental lattice parameters are $a = b = c = 8.3445$ Å, as reported in Table S1.

\mathbf{CS} (C)	Magn. Struc. type	ΔE (eV)	Cell parameters (\AA)	Cell volume (\AA^3)	Average M-O distance (\AA)	Abs. Averag e Mag. Mom. (μ_B)
	NM	34.54	$a=8.03199; b=7.80771;$ $c=8.06645$; α =90.06°; β =90.50°; γ =89.80°	505.84	1.80 (Fe-O T_d) 1.91 (Fe-O O_h) 1.97 (Ni-O O_h)	
$Fd-3m$	FM					
	Ferri	0.00	$a=8.24776$; b=8.33943; $c=8.30065;$ α =89.82°; β =89.91°; γ =90.33°	570.92	1.88 (Fe-O T_d) 2.05 (Fe-O O_h) 1.99 (Ni-O O_h)	4.0 (Fe) 1.2 (Ni)

Figure S13. Optimized cell (right) and spin density plot (left) of ferrimagnetic bulk NiFe_{2-x}O₄ (x = 0.125) inverse spinel (yellow = spin up, cyan = spin down).

Figure S14. Density of states (DOS) between -3 eV and 3 eV of ferrimagnetic bulk NiFe_{2-x}O₄ (x = 0.125) inverse spinel (cyan = spin up, red = spin down).

$ZnFe₂O₄$ **([Zn**_{0.375}Fe_{0.625}]^A{Zn_{0.625}Fe_{1.375}}^BO₄)

Table S11. Optimized computational data on partially inverse ZnFe₂O₄ bulk ($T = 0$ K). The most stable ground state is referred to as 0.00 eV. The experimental lattice parameters are $a = b = c = 8.4437$ Å, as reported in Table S1.

\mathbf{CS} (C)	Magn. Struc. type	ΛE (eV)	Cell parameters (\AA)	Cell volume (\AA^3)	Average M-O distance (\AA)	Abs. Average Mag. Mom. (μ_B)
Fd-3m	NM	33.18	$a=8.17364$; $b=8.07584$; $c=7.99209;$ α =90.15°; β =90.48°; γ =90.70°	527.49	1.81 (Fe-O T_d) 1.94 (Fe-O Oh)	
	FM	4.15	$a=8.46152$; $b=8.45668$; $c = 8.45897;$ α =90.10°; β =90.03°; γ =89.94°	605.29	1.91 (Fe-O T_d) 2.04 (Fe-O Oh)	4.1 (Fe)
	AFM	1.46	$a=8.42173$; b=8.43019; $c=8.42671;$ α =89.97°; β =90.05°; γ =89.96°	598.27	1.90 (Fe-O T_d) 2.04 (Fe-O O_h)	4.0 (Fe)
	Ferri	0.00	$a=8.41588$; b=8.41537; $c=8.41910;$ α =90.06°; β =90.04°; γ =90.02°	596.26	1.89 (Fe-O T_d) 2.04 (Fe-O O_h)	4.0 (Fe)

Figure S15. Optimized cell (right) and spin density plot (left) of ferrimagnetic bulk ZnFe₂O₄ partially inverse spinel (yellow = spin up, cyan = spin down).

Figure S16. Density of states (DOS) between -3 eV and 3 eV of ferrimagnetic bulk ZnFe₂O₄ partially inverse spinel.

$\rm Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ ([$M_{0.125}Fe_{0.875}]$ ^A{ $M_{0.750}Fe_{1.250}$ }^BO₄)

Two models are built based also on the high-resolution XPS data shown in Figure 4 of the main text.

Table S12. Optimized computational data on partially inverse $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ bulk $(T = 0 K)$. The most stable ground state is referred to as 0.00 eV. Some authors reported that the inclusion of Zn^{2+} and Ni^{2+} is difficult in this type of spinel.^[38] This was considered for the building of the computational models. The experimental lattice parameters are a=b=c=8.3832 Å as reported in Table S1.

Model a: [Zn0.125Fe 0.875] *^A***{M0.750Fe 1.250}** *^B***O⁴ (M= Co ,Ni, Mn)**

Figure S17. Optimized cell (right) and spin density plot (left) of model a ferrimagnetic bulk $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ partially inverse spinel (yellow = spin up, cyan = spin down).

Figure S18. Density of states (DOS) between -3 eV and 3 eV of model a ferrimagnetic bulk $\rm Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ partially inverse spinel.

Model b: $[Co_{0.125}Fe_{0.875}]$ ⁴{M_{0.750}Fe_{1.250}}^BO₄ (M = Co ,Ni, Mn, Zn)

Table S13. Optimized computational data on partially inverse Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O₄ bulk (T = 0 K). The most stable ground state is referred to as 0.00 eV .

Figure S19. Optimized supercell (right) and spin density plot (left) of model b ferrimagnetic bulk $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ partially inverse spinel (yellow = spin up, cyan = spin down).

Figure S20. Density of states (DOS) between -3 eV and 3 eV of model b ferrimagnetic bulk $Zn_{0.2}Mn_{0.2}Ni_{0.2}Co_{0.2}Fe_{2.2}O_4$ partially inverse spinel.

Table S14. Calculated minimum band gaps for the spinels under study (E_g in eV). NR = data not been reported in literature.

REFERENCES

[1] D. Lim, H. Kong, N. Kim, C. Lim, W.-S. Ahn and S.-H. Baeck, *ChemNanoMat* **2019**, *5*, 1296–1302.

[2] A. Z. Alhakemy, A. M. Elseman, M. G. Fayed, A. B. Ahmed Amine Nassr, A. El-Hady Kashyout and Z. Wen, *Ceram. Int.* **2022**, *48*, 5442–5449.

[3] K. Lankauf, K. Cysewska, J. Karczewski, A. Mielewczyk-Gryń, K. Górnicka, G. Cempura,

M. Chen, P. Jasiński and S. Molin, *Int. J. Hydrogen Energy* **2020**, *45*, 14867–14879.

[4] G. Liu, K. Wang, X. Gao, D. He and J. Li, *Electrochim. Acta* **2016**, *211*, 871–878.

[5] C. Simon, J. Timm, D. Tetzlaff, J. Jungmann, U.-P. Apfel and R. Marschall, *ChemElectroChem* **2021**, *8*, 227–239.

[6] Y. Hu, X. Zhao, F. Li, Q. Dong, B. Wen, D. Sun, W. Liang and X. Lyu, *ACS Appl. Energy Mater.* **2023**, *6*, 9985–9993.

[7] Y.-Q. Zhang, M. Li, B. Hua, Y. Wang, Y.-F. Sun and J.-L. Luo, *Appl. Catal., B* **2018**, *236*, 413–419.

[8] L. S. Ferreira, T. R. Silva, V. D. Silva, R. A. Raimundo, T. A. Simões, F. J. A. Loureiro, D. P. Fagg, M. A. Morales and D. A. Macedo, *Adv. Powder Technol.* **2022**, *33*, 103391.

[9] C. Si, Y. Zhang, C. Zhang, H. Gao, W. Ma, L. Lv and Z. Zhang, *Electrochim. Acta* **2017**, *245*, 829–838.

[10] S. Jha, P. Jain, R. Palkovits and P. Popinand Ingole, *J. Mater. Chem. A* **2023**, *11*, 23034- 23047.

[11] N. M. Malima, M. D. Khan, J. Choi, R. K. Gupta and N. Revaprasadu, *Mater. Chem. Phys* **2023**, *302*, 127770.

[12] S. B. Sundararaj and S. Thangavelu, *J. Phys. Chem. C* **2023**, *127*, 4953–4966.

[13] J.-B. Tan, P. Sahoo, J.-W. Wang, Y.-W. Hu, Z.-M. Zhang and T.-B. Lu, *Inorg. Chem. Front.* **2018**, *5*, 310–318.

[14] J. Zander, J. P. Wölfel, M. Weiss, Y. Jiang, N. Cheng, S. Zhang and R. Marschall*, Adv. Funct. Mater.* **2023**, *34*, 2310179. [15] J. Baek, M. D. Hossain, P. Mukherjee, J. H. Lee, K. T. Winther, J. Leem, Y. Jiang, W. C.

Chueh, M. Bajdich and X. L. Zheng, *Nat. Commun.* **2023**, *14*, 5936.

[16] Y. Zhang, T. Lu, Y. Ye, W. Dai, Y. a. Zhu and Y. Pan, *ACS Appl. Mater. Interfaces* **2020**, *12*, 32548–32555.

[17] Y. Zhang, W. Dai, P. Zhang, T. Lu and Y. Pan, *J. Alloys Compd.* **2021**, *868*, 159064.

[18] A. Martinez-Lazaro, A. Caprì, I. Gatto, J. Ledesma-García, N. Rey-Raap, A. Arenillas, F.

I. Espinosa-Lagunes, V. Baglio and L. G. Arriaga, *J. Power Sources* **2023**, *556*, 232417.

[19] S. Campagna Zignani, M. Lo Faro, S. Trocino and A. S. Aricò, *Energies* **2020**, *13*, 1720. [20] A. Caprì, I. Gatto, C. Lo Vecchio, S. Trocino, A. Carbone and V. Baglio, *ChemElectroChem* **2023**, *10*, e202201056.

[21] A. Carbone, S. C. Zignani, I. Gatto, S. Trocino and A. S. Aricò, *Int. J. Hydrog. Energy* **2020**, *45*, 9285–9292.

[22] T. Pandiarajan, L.John Berchmans and S. Ravichandran, *RSC Adv.* **2015**, *5*, 34100–34108.

[23] J. Lee, H. Jung, Y. S. Park, S. Woo, N. Kwon, Y. Xing, S. H. Oh, S. M. Choi, J. W. Han and B. Lim, *Chem. Eng. J.* **2021**, *420*, 127670.

[24] A. Caprì, I. Gatto, C. Lo Vecchio and V. Baglio, *Chem. Mater.* **2023**, *1*, 553-562.

[25] C. Busacca, S. C. Zignani, A. Di Blasi, O. Di Blasi, M. Lo Faro, V. Antonucci and A. S. Aricò, *Int. J. Hydrog. Energy* **2019**, *44*, 20987–20996.

[26] A. Y. Faid, A. O. Barnett, F. Seland and S. Sunde, *Int. J. Hydrog. Energy* **2022**, *47*, 23483– 23497.

[27] a) P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru and S. Baroni, *J. Chem. Phys.* **2020**, *152*, 154105; b) P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino,

T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili,

N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé,

D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T.

Thonhauser, P. Umari, N. Vast, X. Wu and S. Baroni, *J. Condens. Matter Phys.* **2017**, *29*,

465901; c) P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,

G. L. Chiarotti, M. Cococcioni and I. Dabo, *J. Condens. Matter Phys.* **2009**, *21*, 395502.

[28] a) M. Cococcioni and S. De Gironcoli, *Phys. Rev. B* **2005**, *71*, 035105; b) B. Himmetoglu,

R. M. Wentzcovitch, M. Cococcioni, *Phys. Rev. B* **2011**, *84*, 115108; c) S. L. Dudarev, G. A.

Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, , *Phys. Rev. B* **1998**, *57*, 1505-1509.

[29] J. Klimeš, D. R. Bowler and A. Michaelides, *J. Condens. Matter Phys.* **2009**, *22*, 022201.

[30] K. Laasonen, A. Pasquarello, R. Car, C. Lee and D. Vanderbilt, *Phys. Rev. B* **1993**, *47*, 10142.

[31] A. Dal Corso, *Comput. Mater. Sci.* **2014**, *95*, 337–350.

[32] H. J. Monkhorst and J. D. Pack, *Phys. Rev. B* **1976**, *13*, 5188.

[33] N. Marzari, D. Vanderbilt, A. De Vita and M. Payne, *Phys. Rev. Lett.* **1999**, *82*, 3296.

[34] a) S. Mugiraneza and A. M. Hallas, *Commun. Phys.* **2022**, *5*, 95; b) S. Blundell, *Magnetism in condensed matter*, OUP Oxford, **2001**.; c) *Magnetism and transition metal complexes*, Courier Corporation, **2008**.

[35] K. Momma and F. Izumi, *J. Appl. Crystallogr.* **2011**, *44*, 1272–1276.

[36] T. Williams and C. Kelley in *gnuplot 5.4. An interactive plotting program. Version 5.4. December, 2020*, *Vol.* **2021**.

[37] J. Klein, L. Kampermann, B. Mockenhaupt, M. Behrens, J. Strunk and G. Bacher, *Adv. Funct. Mater.* **2023**, *33*, 2304523.

[38] F. Arteaga-Cardona, U. Pal, J. M. Alonso, P. de la Presa, M.-E. Mendoza-Alvarez, U. Salazar-Kuri and M. A. Mendez-Rojas, *J. Magn. Magn.* **2019**, *490*, 165496.

[39] M. Meinert and G. Reiss, *J. Condens. Matter Phys.* **2014**, *26*, 115503.

[40] Q.-C. Sun, H. Sims, D. Mazumdar, J. Ma, B. Holinsworth, K. O'Neal, G. Kim, W. Butler, A. Gupta and J. Musfeldt, *Phys. Rev. B* **2012**, *86*, 205106.

[41] L. Idrissi, N. Tahiri, O. El Bounagui and H. Ez-Zahraouy, *J. Supercond. Nov. Magn.* **2020**, *33*, 1369–1375.

[42] J. Wangchhuk and S. R. Meher, *Phys. Lett., A* **2022**, *443*, 128202.

[43] V. Antonov, B. Harmon and A. Yaresko, *Phys. Rev. B* **2003**, *67*, 024417.

[44] B. Holinsworth, D. Mazumdar, H. Sims, Q.-C. Sun, M. Yurtisigi, S. Sarker, A. Gupta, W. Butler and J. Musfeldt, *Appl. Phys. Lett.* **2013**, *103*.

[45] Y. Hou, Y. Zhao, Z. Liu, H. Yu, X. Zhong, W. Qiu, D. Zeng and L. Wen, *J. Phys. D* **2010**, *43*, 445003.

[46] A. de Rezende, M. de Oliveira, R. Ribeiro, W. Mesquita, J. d. J. Marques, N. d. S. Magalhaes, J. Lemes, E. Longo and M. d. C. Gurgel, *Mater.* **2022**, *25*, e20220219.

[47] D. Fritsch, *J. Condens. Matter Phys.* **2018**, *30*, 095502.

[48] A. C. Ulpe and T. Bredow, *ChemPhysChem* **2020**, *21*, 546–551.