Supporting Information

Prussian Blue Analogues with Na₂Ni_xCo_yMn_zFe(CN)₆-Multimetallic Structures as Positive and Hydrogen Vanadate as Negative Electrodes in Aqueous Na-Ion Batteries for Solar Energy Storage Applications

Pappu Naskar^a, Biplab Biswas^a, Sourav Laha^{b,*} and Anjan Banerjee^{a,*}

^a Department of Chemistry, Presidency University-Kolkata, Kolkata-700073, India

^b Department of Chemistry, National Institute of Technology Durgapur, Durgapur-713209, India

Calculations of Diffusion Coefficient (D)

The diffusion coefficients (D) of Na ions in the host structures of PBAs are calculated from EIS data by using Eq. S1.[S1]

 $D = 0.5 \times R^2 \times T^2 \times A^{-2} \times n^{-4} \times F^{-4} \times C^{-2} \times \sigma^{-2}$ (S1)

Herein, R = universal gas constant

T = absolute temperature

A = geometrical area of the electrode

n = number of electron transfers per molecule during oxidation and reduction

F = Faraday constant

C = molar concentration of sodium ions (mole/cm³)

 σ = Warburg factor, which is connected to the real component of impedance (Z')

The following equation shows the relationship between Z' and σ .

 $Z' = R_s + R_{ct} + \sigma \omega^{-1/2}$(S2)

Wherein, ω is the frequency in EIS study.

The linear relationship profiles of Z' with $\omega^{-1/2}$ for PBA-1, PBA-2, PBA-3 and HVO are shown in Figure S1 (a-d), respectively. The Warburg factors (σ) are calculated from the slope of the fitted straight line.

Figure S1: The linear relationship between Z' and $\omega^{-1/2}$ at low-frequency region in EIS (ω = angular frequency) for (a) PBA-1, (b) PBA-2, (c) PBA-3 and (d) HVO.

Parameter / Unit	PBA-1	PBA-2	PBA-3	HVO
R (J K ⁻¹ mol ⁻¹)	8.314	8.314	8.314	8.314
T (K)	303	303	303	303
$A (cm^2)$	1	1	1	1
n	1.66	1.5	1.8	2
F (Coulomb mol ⁻¹)	96485	96485	96485	96485
#C (mol cm ⁻³)	0.0118	0.012	0.0118	0.001
σ (Ohm s ^{-0.5})	33.44	54.6	44.75	9.56
$\mathbf{D} \; (\mathrm{cm}^2 \mathrm{s}^{-1})$	3.09 × 10 ⁻¹⁴	1.68 × 10 ⁻¹⁴	1.29 × 10 ⁻¹⁴	2.50 × 10 ⁻¹¹

Table S1. Calculation of Na-ion diffusion coefficient for PBA-1, PBA-2, PBA-3 and HVO

C value is calculated from the crystal structures of the active materials, which are established by Rietveld refinement of PXRD data.

For PBA-1	For PBA-2		
Formula unit per unit cell $(Z) = 2$	Formula unit per unit cell $(Z) = 2$		
Unit cell volume = 558.57 $Å^3$	Unit cell volume = 551.96 $Å^3$		
Therefore, 4 Na ⁺ ion present in 558.57 $Å^3$	Therefore, 4 Na ⁺ ion present in 551.96 $Å^3$		
Hence, 0.0118 mole Na ⁺ ion present in 1 cm ⁻³	Hence, 0.012 mole Na^+ ion present in 1 cm ⁻³		
For PBA-3	For HVO [S2]		
Formula unit per unit cell $(Z) = 2$	The HVO structure does not contain Na.		
Unit cell volume = 558.39 $Å^3$	Hence, the concentration of Na (mol cm ⁻³) in		
Therefore, 4 Na ⁺ ion present in 558.39 $Å^3$	solid structure will be same with the electrolyte's		
Hence, 0.0118 mole Na ⁺ ion present in 1 cm ⁻³	concentration. Herein, $C = 0.001 \text{ mol cm}^{-3}$		

Figure S2: FT-IR spectra of PBA-1, PBA-2 and PBA-3.

Figure S3: EDX profiles and elemental compositions of (a) PBA-1, (b) PBA-2, (c) PBA-3 and (d) HVO.

Figure S4: FT-IR spectrum of HVO.

Figure S5: Na-ion diffusion pathways found from BVEL calculations for (a) PBA-2 in *b-c* plane, (b) PBA-2 in *a-b* plane, (c) PBA-3 in *b-c* plane and (d) PBA-3 in *a-b* plane.

Figure S6: Cyclic voltammograms of (a) PBA-1, (b) PBA-2, (c) PBA-3 within 0-1.2 V *vs.* Ag/AgCl under the scan rate of 5 to 25 mV s⁻¹; "b" value calculations at the anodic/cathodic peaks for (d) PBA-1, (e) PBA-2, (f) PBA-3.

Figure S7: Nyquist plots at before and after cycling experiments for (a) PBA-1, (b) PBA-2 and (c) PBA-3.

Figure S8: (a) Cyclic voltammograms of HVO within 0.4 to -1.0 V *vs.* Ag/AgCl under the scan rate of 5 to 25 mV s⁻¹; (b) "b" value calculations at the cathodic/anodic peaks for HVO.

Figure S9: Nyquist plots for 5V device along with three constituent cells at their discharged states.

Figure S10: Schematic representation of customs-built solar-charging cum LED-discharging module for prototype battery testing.

References

- S1. Y. Zhang, Z. Su and J. Ding, Synthesis and electrochemical properties of Ge-doped Li₃V₂ (PO₄)₃/C cathode materials for lithium-ion batteries. *J. Alloys Compd.*, 2017, **702**, 427-431.
- S2. C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang, M. Yan, M. Tian, M. Wang, J. Yang and G. Cao, Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. *Energy & Environmental Science*, 2019, 12, 2273-2285.