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1. Numerical model description
The mass and energy balances of the numerical model of the adsorption and desorption phase are 
provided in equations (1) to (6). Equation (1) is the gas phase mass balance, equation (2) is the solid 
phase mass balance and (3) is the overall mass balance. The energy balance in equation (4) includes 
convective mass transfer, conductive mass transfer, reaction heat and an external energy source that 
depends on the design of the adsorption column. Mass transfer to the solid phase is described with 
an intrinsic reaction rate and internal mass transfer limitations are accounted for via the Thiele 
modulus approach (equations (5) and (6))1. For a more detailed model description and validation can 
be found in earlier work2. 
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The numerical framework is showcased for a specific sorbent: Lewatit® VP OC 1065. Besides CO2, this 
sorbent also adsorbs H2O3. The intrinsic reaction rate of CO2 is described with equation (7)4 and the 
reaction rate for H2O is described with equation (9)2. The parameters are collected in Table 1.
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The Toth isotherm is used to correlate the CO2 equilibrium capacity as function of CO2 partial pressure 
and temperature (equations (11) to (14)2,4. However, the CO2 equilibrium capacity also depends on 
the relative humidity. An empirical correlation is used to describe the enhancement of the CO2 
equilibrium capacity as function of relative humidity following equations (15) and (16)3. 

H2O adsorptions occurs via physisorption and is described via the GAB isotherm. It is independent of 
CO2 adsorption and thus only depends on the relative humidity and temperature (equations (17) to 
(19))3. 
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Table 1 – Parameters for the isotherm and reaction rate correlations of CO2 and H2O on Lewatit® VP OC 1065.

Parameter Value
CO2 adsorption  (molCO2 kgs

-1)𝑞𝑠,0 3.40
 (-)𝜒 0
 (K)𝑇0 353.15

 (Pa-1)𝑏0 93.0 × 10-5

 (kJ molCO2
-1)Δ𝐻0 95.3

 (-)𝑡ℎ,0 0.37
 (-)𝛼 0.33
 (-)𝑛 2.05
 (kgs molCO2

-1)𝑚 -0.85
CO2 kinetics  (molCO2 kgs

-1 Pa-1 s-1)
𝑘0,𝐶𝑂2 3.5 × 10-2

 (kJ molCO2
-1)

𝐸𝑎𝑐𝑡,𝐶𝑂2 15.2

H2O adsorption  (molH2O kgs
-1)𝑞𝑚 3.10

 (-)𝐶0,𝐺𝐴𝐵 1.72 × 10-2

 (-)𝑘0,𝐺𝐴𝐵 7.14 × 10-2

 (kJ molH2O
-1)Δ𝐻𝐶 12.24

 (kJ molH2O
-1)Δ𝐻𝑘 5.93

H2O kinetics  (s-1)
𝑘0,𝐻2𝑂 450

 (kJ molH2O
-1)

𝐸𝑎𝑐𝑡,𝐻2𝑂 15.2

2. Steam-assisted temperature vacuum swing process
Figure 1 shows a schematic representation of the S-TVSA process. An in-depth analysis of such 
process can be found in other literature5. We identify eight parameters that influence the 
performance:

1. ambient temperature,
2. ambient relative humidity,
3. gas velocity during adsorption,
4. adsorption time,
5. desorption temperature,
6. desorption pressure,
7. purge gas flowrate, and
8. desorption time.
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Figure 1 – Schematic of a steam-assisted temperature-vacuum swing process.

3. Walkthrough of optimization algorithm
The optimal operating parameters at minimum cost of Direct Air Capture (DAC) are obtained for 
certain set of ambient conditions via an optimization algorithm. This appendix provides an extensive 
overview including intermediate result of one of the simulations. The steps in the optimization are:

Step 1. Select a combination of ambient temperature and relative humidity.
Step 2. Perform sensitivity analysis of the adsorption phase with combinations of superficial 

gas velocity, lean CO2 sorbent loading and adsorption time.
Step 3. Calculate the energy duty and productivity using guess values for the desorption 

parameters.
Step 4. Use the ϵ-constraint method to select potential optimal points on the Pareto front.
Step 5. Perform sensitivity analysis for the regeneration phase for combinations of 

desorption pressure, desorption temperature and purge gas flowrate.
Step 6. Calculate the energy duty and productivity for all combinations of operational 

conditions.
Step 7. Implement the chosen cost model to find the lowest cost of DAC with corresponding 

operational conditions.
Step 8. Repeat steps 3 to 7 using the optimal desorption parameters as guess values in step 3 

until no new optimum is found.

Step 1 – Selection of ambient conditions

The ambient conditions are fixed input parameters of the optimization algorithm. This means that the 
minimum cost of DAC will be obtained for these certain conditions. Thus, it does not find the best 
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temperature and relative humidity for DAC. For that, the optimization algorithm has to be performed 
for all sets of ambient conditions and then find the minimum cost of DAC of those results.

The selected ambient conditions in this example are 25°C and 60% RH. This results in a CO2 equilibrium 
capacity of 1.61 molCO2/kgs and a H2O equilibrium capacity of 3.96 molH2O/kgs. The ambient conditions 
define the temperature and relative humidity of the inlet gas during adsorption and the temperature 
of the cooling medium during cooling. Indirectly, it also determines the initial temperature of the 
heating phase.

Step 2 – Sensitivity analysis of the adsorption phase for all combinations of operational parameters

The adsorption model is solved for a pre-defined set of combinations of superficial gas velocity and 
lean CO2 sorbent loading. The lean H2O sorbent loading is always set at 0 molH2O/kgs. The ranges of 
these parameters are found in Table 2. The adsorption time is fixed at 20 hours, which is long enough 
for CO2 to nearly reach equilibrium.

Table 2 – Range of input parameters for the adsorption sensitivity analysis.

Parameter Minimum value Maximum value
Superficial gas velocity (mg

3 mr
-2 s-1) 0.05 0.3

Lean CO2 sorbent loading (molCO2 kgs
-1) 0.01 0.3

Adsorption time (h) 0 20

The complete steam-assisted temperature vacuum swing adsorption (S-TVSA) cycle consists of an 
adsorption and a regeneration phase. Consequently, a steady-state is reached when the start of the 
adsorption phase equals the end of the regeneration phase. In principle this means that the axial 
concentration, sorbent loading and temperature profiles should match. However, using a uniform CO2 
loading profile resulted in nearly identical results. Therefore, a uniform profile is used, which 
decouples the adsorption model completely from the desorption model. 

Step 3 – Calculation of key performance indicators using guess values for desorption

The energy duty and productivity are calculated for each combination and plotted according to Figure 
2. These are calculated for every 10 minutes of adsorption via interpolation of the of CO2 and H2O 
sorbent loading at that adsorption time. Information from the desorption is also required, but 
unknown at this point. To achieve the most accurate results, the overall optimum of an evaluation 
with very similar ambient temperature and relative humidity is used as initial guess for the optimum 
desorption parameters. Another complexity is that the desorption time depends on the lean CO2 
sorbent loading. To account for this, a single desorption simulation is carried out using the guess values 
for desorption to obtain a relationship between lean CO2 sorbent loading and desorption time.
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Figure 2 – Key performance indicators for the initial adsorption analysis using guess values for desorption. Both graphs 
contain the same data points, but the corresponding (A) lean CO2 loading (left) and (B) superficial gas velocity (right) are 

shown by the colourbar.

Step 4 – Selection of Pareto points

A large set of data points are obtained and is it not feasible to perform a similar analysis for the 
desorption phase for each and every point. Therefore, only a small selection is made following a Pareto 
point analysis.

A Pareto front is formed with this type of analysis with multiple objectives. The energy duty is 
preferably as low as possible and the productivity is preferably as high as possible. The optimal point 
will then be in the top left region, which is referred to as the ‘Utopia’ point. It becomes clear that most 
combinations would never be the optimal operation point. The optimum will be one of the ‘non-
dominated’ points, which are situated on the Pareto front. We use the ϵ-constraint method to find 
these Pareto points6,7. In this method, one objective function is optimised (productivity), while the 
other is constraint (energy duty) (Figure 3). First, the absolute maximum productivity and minimum 
energy duty are found. Then, all the points with a higher energy duty than the energy duty 
corresponding to the maximum productivity and all the points with a lower productivity than the 
productivity corresponding to the minimum energy duty are removed. These will never be an 
optimum. The domain between the minimum and maximum energy duty is divided into ten segments 
(log spacing is used to get a bit more points on the lower energy duty regime) and the point with the 
maximum productivity in each segment is selected for further optimization. In this manner, only a very 
selective set of combinations are thereby used for the regeneration analysis.

For this approach to be valid, a lower energy duty must always be beneficial. However, the energy 
duty consists of thermal energy and electrical energy. The costs of these energy sources depend on 
the actual sources of energy, but most likely are not equal. Therefore, a higher energy duty does not 
necessarily correspond to higher energy cost. Somehow, these different energy costs should be 
translated to an ‘equivalent’ energy duty. In this study, the thermal energy is assumed to be generated 
via a heat pump with a coefficient of performance (COP) of 1.78.
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Figure 3 – Pareto front analysis using the ϵ-constraint method to find potential optimal operating points.

Step 5 – Analysis of the regeneration phase for the Pareto points

Eleven Pareto points with each a different combination of superficial gas velocity, lean CO2 sorbent 
loading and adsorption time are selected via the Pareto front analysis. The regeneration phase is 
simulated for each of these points with varying combinations of desorption temperature, desorption 
pressure and purge gas flowrate. Table 3 shows the applied ranges for these values. The desorption 
temperature is fixed at the highest possible value. A previous studies concluded that it is beneficial for 
both energy duty and productivity to operate at the highest possible temperature2. 

Table 3 – Range of input parameters for the desorption sensitivity analysis.

Parameter Minimum value Maximum value
Desorption temperature (°C) 120 120
Desorption pressure (mbar) 15 150
Purge gas flowrate (gpurge kgs

-1 min-1) 0.5 6

The regeneration phase consists of consecutive heating, desorption and cooling. Heating starts at the 
end temperature of adsorption, in general identical to the ambient temperature. This temperature is 
obtained from the adsorption phase and rounded to the nearest 5°C. Each heating phase ends at 50°C. 
Consequently, each desorption phase starts at the same temperature, which makes the desorption 
phase independent from the heating phase.

Desorption only requires an initial CO2 and H2O sorbent loading, which are obtained from the 
adsorption results. Again, a uniform axial loading profile is used. The CO2 loading is rounded to the 
nearest 0.05 molCO2/kgs and the H2O loading is rounded to the nearest 0.5 molH2O/kgs. This saves 
computation time, since the desorption model does not need to be repeated for Pareto points with 
very similar CO2 and H2O loading.

Cooling requires the end temperature of desorption, which is not necessarily equal to the temperature 
of the heating medium (i.e. the desorption temperature). This end temperature is rounded to the 
nearest 5°C and heating is continued until a temperature of 40°C. That is well below the threshold of 
oxidative degradation. However, this is an average temperature and due to the poorly conducting 
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sorbent, a temperature gradient is expected. Therefore, cooling a bit further than the oxidative 
degradation threshold is advised to allow the complete bed temperature to be sufficiently reduced.

Step 6 – Calculation of key performance indicators

The actual productivity and energy duty are calculated from the combination of adsorption and 
regeneration parameters. Unlike in step 3, these do not contain guess values and are the actual key 
performance indicators. Figure 4 shows the new data points that are obtained from the original Pareto 
points. Varying the desorption pressure and purge gas flowrate improved the productivity and energy 
duty.

Figure 4 – Refinement of the Pareto front with the regeneration sensitivity analysis. The larger circles are the original Pareto 
points and the colour corresponds to the same original Pareto point.

Step 7 – implement cost model to find optimal operating point

The economic analysis is carried out using the productivity and energy duty of all points in Figure 4. 
The point of minimum cost of DAC will be located somewhere on the new Pareto front. Therefore, the 
economic analysis could be carried for these points only. However, these are straightforward 
calculations that require little computation time. Figure 5 shows the location of the minimum cost of 
DAC with the corresponding value for desorption pressure and purge gas flowrate. In additions, it 
visualizes the impact of both operational parameters on the energy duty and productivity.
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Figure 5 – Point of minimum cost of DAC with corresponding (A) desorption pressure (left) and (B) purge gas flowrate (right). 
Data points are equal to Figure 4.

An economic evaluation is needed to solve the trade-off between energy duty and productivity (step 
7). We use a rather simple cost model proposed by Towler and Sinnott9. The capital costs are based 
on a novel (2020) 0.5 tpa DAC pilot unit5. The total ISBL capital investment of this pilot unit is estimated 
and scaled up to a capacity of 10 kton per annum. For this, we assume an economy of scale factor 0.6 
following the “six-tenth rule”. The operational costs include costs of sorbent, labour, maintenance, 
energy and additional fixed costs. Table 4 lists the assumptions used in the economic analysis. The 
cost of energy depends on the availability of renewable energy or waste heat. The most widely 
accessible form of renewable energy is solar power via either photovoltaic systems or wind power. 
This produces electrical energy, which is converted to thermal energy. We propose to use a high 
temperature heat pump and assume a COP of 1.78.

Table 4 – Assumptions for the economic analysis to calculate the cost of DAC.

Parameter Value
CAPEX of DAC pilot unit (€2020) 25,000
Full scale capacity (tCO2 yr-1) 10,000
Economy of scale (-) 0.6
Depreciation time (yr) 10
Sorbent lifetime (yr) 2
Sorbent costs (€ kgs

-1) 30
Working hours (h yr-1) 8,400
Salary costs (€ yr-1) 35,000
Maintenance costs 4% of CAPEX
Additional fixed costs 2% of CAPEX
Solar energy price (€ kWh-1)10 0.03

Step 8 - iteration with updated guess values to find overall optimum

Steps 3 to 7 are repeated using the set of optimum operational parameters obtained in step 7 as guess 
values in step 3. This is necessary, because the initial guess values might not have been sufficiently 
accurate. After the initial analysis of the energy duty and productivity, only a very small selection of 
points (∼0.2%) were used for further analysis. It is very well possible that with more accurate guess 
values, other points end up at the Pareto front. Therefore, the ‘optimal’ results of the first optimization 
round are used as new guess values to check for new Pareto points. In case of a series of evaluations, 
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the overall optimum of an evaluation with very similar ambient conditions can be used as guess value. 
That will result in a rather accurate initial guess, since, for example, a 5°C difference in temperature is 
not expected to result in a very large difference in optimal point.

There is no need for new simulations of the adsorption phase, only the key performance indicators 
are calculated using updated values for the desorption parameters. A new Pareto front is obtained as 
shown in Figure 6, which gives a better representation of the actual key performance indicators. The 
same Pareto front analysis is performed to obtain eleven Pareto points.

Figure 6 – Updated Pareto front using the new guess values.

The regeneration analysis is carried out using these new Pareto points. Note that these are not 
necessarily new combinations of superficial gas velocity, lean CO2 sorbent loading and adsorption 
time. The updated desorption parameters merely caused a new value for the key performance 
indicators. Therefore, the regeneration analysis is only carried out for new combinations of the 
adsorption parameters. In the current example, five new Pareto points are found as shown in Figure 
7.
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Figure 7 – Complete Pareto front after the new regeneration analysis including the original points and the new points.

As shown in Figure 7, a new optimal point is obtained, although very close to the initial optimum. 
Iteration can be continued until no new optimum is found. The results for an ambient temperature of 
25°C and a relative humidity of 60% are summarized in Table 5. Figure 8 provides the effect of the key 
performance indicators on the cost of DAC. Interestingly, the minimum cost of DAC corresponds to a 
high value for productivity, and with that, a high value for the energy duty. In addition, the final results 
of the optimization of a colder, more humid ambient condition are presented (Table 5 and Figure 8). 
It shows a clear increase in cost of DAC for the colder conditions (310€/tCO2 versus 504€/tCO2) and a 
major decrease in performance.

Figure 8 – Contour map of the cost of DAC as function of productivity and energy duty. The final data points from step 8 of 
two sets of ambient conditions are added for comparison.
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Table 5 – Summary of the results of the optimization algorithm for two different ambient conditions.

Parameter 25°C/60% RH 5°C/90% RH
Cost of Direct Air Capture (€ tCO2

-1) 310 504
Energy duty (MJ kgCO2

-1) 18.8 35.0
Productivity (kgCO2 kgs-1 d-1) 0.50 0.28
Superficial gas velocity (mg

3 mr
-2 s-1) 0.3 0.15

Lean CO2 sorbent loading (molCO2 kgs
-1) 0.05 0.01

Adsorption time (min) 90 160
Desorption temperature (°C) 120 120
Desorption pressure (mbar) 15 50
Purge gas flowrate (gpurge kgs

-1 min-1) 0.5 1
CO2 working capacity (molCO2 kgs

-1) 0.91 0.92
H2O working capacity (molH2O kgs

-1) 3.9 12.3
Desorption time (min) 15 36
Heating time (min) 2 3
Cooling time (min) 9 7
Cycle time (min) 116 206
CO2 selectivity (molCO2 molH2O

-1) 0.23 0.08
Capture efficiency (-) 0.38 0.40
Purge gas ratio (molpurge molCO2

-1) 0.46 2.2
CO2 reaction enthalpy (MJ kgCO2

-1) 1.7 1.7
H2O reaction enthalpy (MJ kgCO2

-1) 4.2 13.0
Sorbent sensible heat (MJ kgCO2

-1) 2.8 4.3
Reactor sensible heat (MJ kgCO2

-1) 4.5 6.8
Purge gas latent and sensible heat (MJ kgCO2

-1) 0.5 2.4
Feed compression (MJ kgCO2

-1) 1.5 0.6
Vacuum generation (MJ kgCO2

-1) 3.6 6.2
Electrical energy costs (€ tCO2

-1) 109 194
Thermal energy costs (€ tCO2

-1) 0 0
Depreciation (€ tCO2

-1) 70 98
Sorbent costs (€ tCO2

-1) 86 151
Miscellaneous costs (€ tCO2

-1) 45 62
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4. Performance indicators
The energy duty and productivity are key performance indicators to determine the cost of DAC. To 
provide more fundamental insight in the origin of the differences between ambient conditions, Figure 
9 gives the CO2 working capacity, H2O working capacity, cycle time, gas efficiency, pressure drop and 
purge gas ratio. These parameters are directly used to calculate the energy duty and productivity.

Figure 9 – Performance indicators that are used to calculate the energy duty and productivity for each combination of 
temperature and relative humidity.

5. Year-round climate data
The average cost of DAC for year-round operation was determined for several locations around the 
world. A graphical representation is provided in Figure 10 including the average cost of DAC that 
corresponds to the specific climate conditions. Figure 11 provides the six-hour average temperature 
and relative humidity for 2021 of each evaluated city. Note that the temperature ranges from -15 to 
45°C, but some locations exceed this range in extreme cases.
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Figure 10 – World map with average cost of DAC for year-round production.
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Figure 11 – Six-hour average weather data for 46 cities around the world with different climates. Data colours refer to the 
climate groups presented in Figure 10.11
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6. Nomenclature
Symbol Description Unit
𝑎 parameter for CO2 equilibrium capacity in humid conditions -

 𝑏 Tóth affinity parameter Pa-1

 𝑏0 Tóth affinity parameter at reference temperature Pa-1

 𝐶𝑝 specific heat capacity J kg-1 K-1

 𝐶0,𝐺𝐴𝐵 Arrhenius pre-exponential factor of 𝐶𝐺𝐴𝐵 -

 𝐶𝐺𝐴𝐵 Guggenheim constant in GAB isotherm -
 𝑐 concentration mol mg

-3

 𝐷𝑎𝑥 axial dispersion coefficient mg
3 mr

-1 s-1

 𝐷𝑝 effective pore diffusion coefficient mg
3 mr

-1 s-1

 𝐸𝑎𝑐𝑡 activation energy J mol-1

 𝑓𝑒𝑛ℎ enhancement factor -
 Δ𝑟𝐻 reaction enthalpy J mol-1

 Δ𝐻𝐶 difference in enthalpy between monolayer and multilayer J molH2O
-1

 Δ𝐻𝑘 difference in enthalpy between bulk liquid and multilayer J molH2O
-1

 𝑘0 Arrhenius pre-exponential factor of reaction rate constant  𝑘𝑇

or 𝑘𝐿𝐷𝐹

molCO2 kgs
-1 Pa-1 s-1 

or s-1 

 𝑘0,𝐺𝐴𝐵 Arrhenius pre-exponential factor of  𝑘𝐺𝐴𝐵 -

 𝑘𝐺𝐴𝐵 multilayer correction factor in GAB isotherm -
 𝑘𝐿𝐷𝐹 linear driving force reaction rate constant s-1

 𝑘𝑇 Tóth reaction rate constant molCO2 kgs
-1 Pa-1 s-1

𝑚 fit parameter for CO2/H2O co-adsorption  correlation kgs molCO2
-1

𝑛 fit parameter for CO2/H2O co-adsorption  correlation -
 𝑝 pressure Pa

𝑄𝑠𝑜𝑢𝑟𝑐𝑒 energy source J mr
-3 s-1

 𝑞 sorbent loading mol kgs
-1

 𝑞𝑠 Tóth maximum sorbent loading molCO2 kgs
-1

 𝑞𝑠,0 Tóth maximum sorbent loading at reference temperature molCO2 kgs
-1

 𝑅 gas constant J mol-1 K-1

 𝑅𝑖 reaction rate of component 𝑖 mol kgs
-1 s-1

 𝑟 radius m
 𝑇 temperature K
 𝑇0 Tóth reference temperature K

 𝑡 time s
 𝑡ℎ Tóth heterogeneity parameter -

 𝑡ℎ,0 Tóth heterogeneity parameter at reference temperature -
 𝑢𝑔 superficial gas velocity mg

3 mr
-2 s-1

 𝑉 volume m3

 𝑧 axial position m

Greek symbols
 𝛼 temperature dependency parameter of 𝑡ℎ -

 𝜀 void fraction -
 𝜂𝑖 effectiveness factor of component 𝑖 -
 𝜆 thermal conductivity W m-1 K-1

 𝜌 density kg m-3

 𝜙𝑡ℎ Thiele modulus -
 𝜒 temperature dependency parameter of  𝑞𝑠 -
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Subscripts
 𝑎𝑑𝑠 adsorption

 𝑎𝑣 average
 𝑎𝑥 axial direction

 𝑏𝑢𝑙𝑘 bulk phase
 𝐶𝑂2 carbon dioxide

eff effective
 𝑒𝑞 equilibrium

 𝑔 gas phase
 𝐻2𝑂 water

 𝑖 component
 𝑟 reactor
 𝑠 solid phase

Superscripts
dry dry conditions
sat saturation
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