Electronic Supporting Information (ESI)

Supported Ruthenium Catalyst for Transformation of Aqueous Glycerol to Hydrogen Gas and Lactic Acid

Ankit Kumar,^a Bhanu Priya,^a Rohit Kumar Rai,^b Parveen Garg,^c Uday Deshpande,^c and Sanjay Kumar Singh^{*a}

^aCatalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, M. P., India.

^bKAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. ^cUGC-DAE Consortium for Scientific Research, Indore 452001, M.P., India.

Email: sksingh@iiti.ac.in (SKS)

Calculation of TON and TOF

Turnover number (TON) and Turnover frequency were calculated using the formula given below. The gas was collected at room temperature for all the reactions.

 $TON = n(H_2)/n(catalyst)$ TOF = TON/time

Where $n(H_2)$ is the number of millimoles of gas released, was calculated by considering $V_{m,H2,25^{\circ}C}$ values from Vander Waals equation as shown in the previous work,^{S1} and n(catalyst) is the millimole of catalyst used for the catalytic reaction.

Calculation of conversion, selectivity, yield, and carbon balance⁸²

Conversion = $[C_i(GLY) - C_f(GLY)]/C_i(GLY) \times 100 (\%)$

Selectivity = $C_f(P)/C_c(GLY) \times 100$ (%)

 $Yield = C_f(P)/C_i(GLY) \times 100 (\%)$

Carbon Balance = $[1-Conv._{GLY} + Y_{SL} + Y_{SG} + Y_{PD} + Y_{SF}] \times 100 (\%)$

Where $C_i(GLY)$ = millimoles of carbon in the initial glycerol

 $C_{f}(GLY) =$ millimoles of carbon in the final glycerol

 $C_c(GLY)$ = millimoles of carbon in the converted glycerol

 $C_{f}(P)$ = millimoles of carbons in the final product

Calculation of metal dispersion^{\$3, \$4}

'Metal Dispersion' describes the distribution of metal nanoparticles over the support, where high dispersion indicates that the nanoparticles are uniformly distributed, resulting in a greater surface area of the active component being available for catalysis, whereas low dispersion signifies that the nanoparticles are clustered or aggregated, thereby reducing the available active surface area. In our study, 'dispersion' refers to the particle size of Ru nanoparticles. Particle size measured using TEM is used to estimate the dispersion by assuming metal nanoparticles as spherical particles, as explained in the following sections.

- Let's consider a collection of n_i spherical particles of diameter d_i , of area A_i (or πd_i^2) and of volume V_i (or $\pi d_i^3/6$). As two mean particle sizes are usually considered, the length-number mean diameter, $d_{LN} = \sum n_i d_i / \sum n_i$ and the volume-area mean diameter, $d_{VA} = \sum n_i d_i^3 / \sum n_i d_i^2$.
- The surface area occupied by an atom m on a polycrystalline surface is given by

$$a_{\rm m} = 1/n_{\rm s}$$

where n_s is the mean number of atoms (For Ru, $a_m = 6.35 \text{ Å}^2$).

• The volume V_m occupied by an atom m in the bulk of the metal is given by

$$V_{\rm m} = M_{\rm Ru} / (\rho \times N_{\rm A}) \tag{1}$$

where M_{Ru} = Atomic weight of Ru metal and ρ = Density of Ru metal, N_A = Avogadro's number

• The relation between specific surface area (S_{sp}) and mean particle size (d_{VA}) is

$$S_{sp} = \sum n_i A_i / (\rho \sum n_i V_i)$$
⁽²⁾

Since, $Ai = \pi d_i^2$ and $Vi = \pi d_i^3/6$,

Therefore,
$$S_{sp} = 6/(\rho \times d_{VA})$$
 (3)

• The relation between specific surface area (S_{sp}) and metal dispersion (D) is

$$S_{sp} = a_m \times (N_A / M_{Ru}) \times D \tag{4}$$

The relation between metal dispersion (D) and mean particle size (d_{VA}):
 We can write from eq. (3)

$$d_{\rm VA} = 6/(\rho \times S_{\rm sp}) \tag{5}$$

Using eq. (1), (4) and (5); we can write

$$d_{VA} = 6/[(a_m/V_m) \times D]$$
$$D = 6[(V_m/a_m)/d_{VA}]$$
(6)

Putting the value of V_m from eq. (1) in eq. (6);

$$D = (6 \times M_{Ru})/(\rho \times d_{VA} \times a_m \times N_A)$$

$$D (\%) = (600 \times M_{Ru})/(\rho \times d_{VA} \times a_m \times N_A)$$
(7)

where M_{Ru} = Atomic weight of Ru metal and ρ = Density of Ru metal

 d_{VA} = Particle size in nm, estimated from TEM analysis

a_m = Atomic surface area of Ru metal

The surface area occupied by an atom (a_m) is related to the mean number of surface atoms per unit area (n_s) by the equation $a_m = 1/n_s$. For Ru, which adopts a hexagonal close-packed (hcp) structure, the number of surface atoms (n_s) was determined based on the (001) plane using the lattice parameters of ruthenium.^{S4} The calculated value of a_m for Ru (6.35 Å²) was also adopted by other authors.^{S3}

Catalyst	Solvent	Base (equiv.)	T(°C) /t(h)	Gas/ p(bar)	Conv. (%)	Sel. of LA (%)	Contaminants	Sel. of H ₂ /{n(H ₂)/ n(GLY)}	Ref.	
		NaOH	120/4 5	A	>00	97	J		This	
Ru/La(OH) ₃	water	NaOH (2.0)	130/4.5	Ar	~99	80	n. a.	>99.9%0/1.4	I IIIS work	
Ru	water	NaOH	110/10	Ar	>99	70	n. d.	>99%/1.6	WOIK	
110	,, ator	(2.0)	110/10	1 11		10		<i>yyyyyyyyyyyyy</i>	S2	
Ru-NMC-3	water	-	250/12	N ₂ /40	92	-	CO, CO_2, CH_4	88.5/-		
Ru-Pt-NMC-3	water	-	250/12	N ₂ /40	87.9	-	CO, CO_2, CH_4	82.2/-	S3	
Ru/NaY	-	-	250/12	N ₂ /40	88.1	-	CO, CO_2, CH_4	68.1/-	S5	
PtMo/C	water	-	230/720	Ar/31	26	-	CO_2, CH_4	55.3/-	S 6	
PtRe/C	water	КОН	225/-	N ₂ /29	58.5	-	CO, CO ₂ , Alkane	24.5/-	S7	
Ni/Al ₂ O ₃ - La ₂ O ₂	water	-	225/2.5	-/30	37	-	CO, CO_2, CH_4	32/-	S8	
Pt-	water	-	200/5	-/29	98	-	CO, CO_2, CH_4	55.3/-	S9	
Pt/Al_2O_3	water	-	225/24	N ₂ /29	83	-	CO ₂ , Alkane	75/-	S10	
Pt-KHT/28	water	-	250/4	N ₂ /45	83	-	CO ₂ , Alkane	67.4/-	S11	
1Pt- 3Ni/MWCNT	water	-	250	-/40	99	-	CO, CO_2, CH_4	90.9/-	S12	
PtFe/ y-Al ₂ O ₃	water	-	225/-	-/27.6	66	-	CO, CO_2, CH_4	45.8/-	S13	
Pt/SiO ₂	water	-	230/4	-/32	10.8	-	CO, CO ₂ , Alkane	71.8/-	S14	
Ce-Sm-5Cu	water	-	400- 750/6	-	80	-	CO, CO_2, CH_4	44-75/-	S15	
Ru/Y ₂ O ₃	water	-	600/24	-	>99	-	CO, CO_2, CH_4	90	S16	
Ru/Al_2O_3	water	-	900	-	58	-	CO, CO_2, CH_4	42	S17	
Ru/Al_2O_3	water	-	350-500	-/10	50	-	CO, CO_2, CH_4	58.3	S18	
Ru/Al_2O_3	water	-	400-600	-	92	-	CO, CO_2, CH_4	68	S19	
Pt/ZrO ₂	water	NaOH (1.5)	160/4.5	N ₂ /20	96	95	n. d.	-	S20	
Ru-Zn-	water		100/12	vacuum	26.7	80.1				
Cu(I)/HAP		NaOH (1.5)	120/12	vacuum	42.2	81.8	CH_4		S21	
			140/12	vacuum	72.8	83.6				
			140/21	vacuum	100	82.7				
Pt-Co/CeO _x	water	NaOH (1.0)	200/4	N ₂ /10	85	88	CO_2, CH_4	-	S22	
Au/HAP/BN	water	NaOH (1.0)	100/2	Air/1	100	99.5	n. d.	-	S23	
Pt/C	water	NaOH (1.17)	140/3	$C_2H_4/60$	~100	95	n. d.	-	S24	
Pt/C	water	NaOH (1.8)	180/24	He/30	100	80	n. d.	-	S25	

Table S1 Comparison with hydrogen production systems from glycerol in the literature.

_

Pt/C	-	KOH (1.1)	160/18	N ₂ /1	95	93	n. d.	-	S26
PtRu/C	water	NaOH (0.8)	200/1.5	$H_2/40$	100	37	CO_2, CH_4	-	S27
Pd/HAP	water	NaOH (1.1)	230/1.5	-	99	95	n. d.	-	S28
Rh/ZnO	water	NaOH (0.8)	180/12	He/20	~100	68	n. d.	-	S29
CuPd/rGO	water	NaOH (1.1)	140/6	N ₂ /14	56	88	n. d.	-	S30
Cu/SiO_2	water	NaOH (1.1-	240/6	N ₂ /14	75	82	CO ₂ , Alkanes	-	S31
		1.5)							
CuO/CeO ₂	water	NaOH (1.0)	220/8	N ₂ /20	87	74	n. d.	-	S32
Ni _{0.3} /graphite	water	NaOH (1.1)	230/2	N ₂ /1	97	92	n. d.	-	S33

NMC – N-doped mesoporous carbon, NaY – sodium zeolite, KHT – K-promoted hydrotalcite, MWCNT – multiwalled carbon nanotubes, HAP- hydroxyapatite, BN- boron nitride, rGO – reduced graphene oxide, n. d. – not determined

Scheme S1 Possible pathways for the catalytic conversion of GLY to H_2 gas and valuable co-products.

Scheme S2 Key reactions involved in the transformation of glycerol to H₂ gas.

Fig. S1 P-XRD pattern of the ruthenium-based supported catalysts.

Fig. S2 (a-b) SEM images and (c) corresponding EDX spectra of Ru/La(OH)₃ catalyst.

Fig. S3 (a) HR-TEM, (b-c) HAADF-STEM images and corresponding EDS elemental map of elements (d) Ruthenium (dark yellow), (e) Lanthanum (orange) and (f) Oxygen (cyan) of Ru/La(OH)₃ catalyst.

Fig. S4 (a) SEM image and (b) corresponding elemental mapping showing the presence of (c) Ru (cyan), (d) La (red), and (e) O (green) in the Ru/La(OH)₃ catalyst.

Fig. S5 (a-b) SEM images and (c) corresponding EDX spectra of Ru/ZnO catalyst.

Fig. S6 (a) SEM image and (b) corresponding elemental mapping showing the presence of (c) Ru (purple), (d) Zn (red), and (e) O (green) in the Ru/ZnO catalyst.

Fig. S7 (a-b) SEM images and (c) corresponding EDX spectra of Ru/Mg(OH)₂ catalyst.

Fig. S8 (a) SEM image and (b) corresponding elemental mapping showing the presence of (c) Ru (cyan), (d) Mg (red), and (e) O (green) in Ru/Mg(OH)₂ catalyst.

Fig. S9 (a-b) SEM images and (c) corresponding EDX spectra of Ru/ZrO₂ catalyst.

Fig. S10 (a) SEM image and (b) corresponding elemental mapping showing the presence of (c) Ru (cyan), (d) Zr (red), and (e) O (green) in Ru/ZrO₂ catalyst.

Fig. S11 (a-b) SEM images and (c) corresponding EDX spectra of Ru/TiO₂ catalyst.

Fig. S12 (a) SEM image and (b) corresponding elemental mapping showing the presence of (c) Ru (purple), (d) Ti (red), and (e) O (cyan) in Ru/TiO₂ catalyst

Entry	Catalyst	Specific surface area	Metal loading	Metal particle size	Metal dispersion
		(m²/g) ^a	(wt. %) ^b	(nm)°	(%) ^d
1	Ru/La(OH) ₃	81	9.0	1.5	87
2	Ru/ZnO	30	8.2	1.5	87
3	Ru/Mg(OH) ₂	172	7.5	1.7	76
4	Ru/ZrO ₂	30	8.3	1.8	72
5	Ru/TiO ₂	27	8.6	1.5	87

^aCalculated using N₂ adsorption-desorption isotherms. ^bCalculated using ICP-AES. ^cParticle size was calculated by TEM analysis. ^dDispersion was calculated using the equation described in Ref. S3.

Fig. S13 Effect of different supports on the dehydrogenation of GLY to H_2 gas and SL. Reaction Conditions: Ru/support (100 mg), GLY (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, 4.5 h, and 600 rpm.

Fig. S14 Effect of different supports in the turnover number (TON) on the dehydrogenation of GLY to H_2 gas and SL. Reaction Conditions: Ru/support (100 mg), GLY (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, 4.5 h, and 600 rpm.

Fig. S15 TEM image of (a-c) Ru/La(OH)₃ catalyst, and red circled dark spot represent the Ru nanoparticles, (b) lattice fringes corresponding to $La(OH)_3$ support in Ru/La(OH)₃ catalyst, (d) La(OH)₃ support alone, (e) lattice fringes corresponding to Fig. (d), and (f) SAED pattern of La(OH)₃ support.

Fig. S16 N_2 adsorption-desorption isotherm of (a) Ru-supported catalysts and (b) $Ru/Mg(OH)_2$ catalyst.

Fig. S17 CO_2 TPD profiles for supported Ru catalysts.

Fig. S18 Wide scan XPS spectra of the Ru/La(OH)₃ catalyst.

Fig. S19 XPS spectra of the Ru 3d region of the Ru/La(OH)₃ catalyst.

Fig. S20 XPS spectra of the O 1s region of the Ru/La(OH)₃ catalyst.

Fig. S21 (a) GC-TCD analysis of the gas produced from the reaction during dehydrogenation of glycerol and (b) standard mixture of gases with the composition of CO (24.965%), CO₂ (24.962%), CH₄ (25.012%), and H₂ (25.061%).

Fig. S22 Effect of water content: time course plot for hydrogen production from glycerol over the $Ru/La(OH)_3$ catalyst. Reaction conditions: $Ru/La(OH)_3$ (100 mg, 9 wt% Ru), glycerol (13.68 mmol), NaOH (27.36 mmol), water (0-20 equiv.), 130 °C, and 600 rpm.

Fig. S23 Effect of base concentration: time course plot for hydrogen production from glycerol over the $Ru/La(OH)_3$ catalyst. Reaction conditions: $Ru/La(OH)_3$ (100 mg, 9 wt% Ru), glycerol (13.68 mmol), NaOH (0.5-2.0 equiv.), water (41.04 mmol), 130 °C, and 600 rpm.

Table S3 Effect of base and temperature in hydrogen production from glycerol over the Ru/La(OH)₃.^a

HO HO HO HO HO HO HO HO H											
Entry	Base	T (°C)	H ₂	<i>n</i> (H ₂)/	Conv.	Yield of p	rodu	ets (%)°	CB	Initial
	(2.0 equiv.)	/t (h)	gas (mL) ^b	n(GLY)	(%)	SL (sel. %)	SG	PD	SF	- (%) ^d	TOF (h ⁻¹) ^e
1	NaOH	130/4.5	470	1.4	>99	86 (86)	-	-	12	98	105
2	KOH	130/8	308	0.9	88	72 (82)	2	2	7	95	56
3	KO ^t Bu	130/8	208	0.6	72	62 (86)	2	1	5	98	38
4	Na ₂ CO ₃	130/4.5	-	-	n. r.	-	-		-	-	-
5	K ₂ CO ₃	130/4.5	-	-	n. r.	-	-	-	-	-	-
6	NaOH	90/14	326	1.0	91	80 (88)	2	-	6	97	31
7	NaOH	100/12	360	1.1	95	85 (89)	1	-	6	97	41
8	NaOH	110/9	460	1.4	>99	87 (87)	-	-	11	98	57
9	NaOH	120/6.5	466	1.4	>99	86 (86)	1	-	10	97	77
10^{f}	NaOH	130/8.5	88	0.3	52	41 (79)	2	-	5	96	10
11 ^g	NaOH	130/10	144	0.4	70	56 (80)	3	-	6	95	21
12 ^h	NaOH	130/6.5	354	1.1	95	79 (83)	2	-	11	97	52

^aReaction conditions: Ru/La(OH)₃ (100 mg, 9 wt% Ru), GLY (13.68 mmol), base (27.36 mmol), water (41.04 mmol), 90-130 °C and 600 rpm. ^bVolume of gas was measured by water displacement method. ^cYield was calculated by ¹H NMR using sodium acetate as an internal standard. ^dCB is carbon balance. ^eTurnover frequency was calculated based on the volume of H₂ gas released in initial 1 h; TOF = TON/t. ^fRu/La(OH)₃ catalyst (100 mg, 1 wt% Ru), ^gRu/La(OH)₃ catalyst (100 mg, 2.5 wt% Ru), ^hRu/La(OH)₃ catalyst (100 mg, 5 wt% Ru). The results reported are the average of at least two repeated reactions. SL (sodium lactate), SG (sodium glycolate), PD (1,2-propanediol), and SF (sodium formate). n. r. (no reaction)

Sr. No.	Catalytic run	GLY conv. (%)	n(H ₂) /n(GLY)	Selectivity	7 (yield) (%	6) on carb	on basis
				SL	SG	PD	SF
1	Run 1	62	0.45	87 (54)	3 (2)	2(1)	6 (4)
2	Run 2	62	0.45	87 (54)	3 (2)	2 (1)	6 (4)
3	Run 3	62	0.45	87 (54)	3 (2)	2 (1)	6 (4)
4	Run 4	62	0.45	87 (54)	3 (2)	2 (1)	6 (4)
5	Run 5	62	0.45	87 (54)	3 (2)	2 (1)	6 (4)
6	Run 6	62	0.45	87 (54)	3 (2)	2 (1)	6 (4)
7	Run 7	60	0.43	88 (53)	2 (1)	2 (1)	3 (2)
8	Run 8	60	0.43	88 (53)	2 (1)	2 (1)	3 (2)
9	Run 9	58	0.41	86 (50)	2 (1)	2 (1)	3 (2)
10	Run 10	56	0.39	86 (48)	2 (1)	2 (1)	3 (3)

Table S4. Recyclability data at the intermediate conversion of GLY.^a

^aReaction conditions: $Ru/La(OH)_3$ (100 mg, 9 wt% Ru), GLY (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, 1.5 h, and 600 rpm.

Sr. No.	Catalytic run	GLY conv. (%)	<i>n</i> (H ₂) / <i>n</i> (GLY)	Selectivity (yield) (%) on carbon basis				
				SL	SG	PD	SF	
1	Run 1	>99	1.4	86 (86)	-	-	12 (12)	
2	Run 2	>99	1.4	86 (86)	-	-	12 (12)	
3	Run 3	>99	1.4	86 (86)	-	-	12 (12)	
4	Run 4	>99	1.4	86 (86)	-	-	12 (12)	
5	Run 5	>99	1.4	86 (86)	-	-	12 (12)	
6	Run 6	96	1.34	85 (82)	2	1	6 (6)	
7	Run 7	96	1.34	85 (82)	2	1	6 (6)	
8	Run 8	92	1.3	85 (78)	2	1	6 (6)	
9	Run 9	89	1.2	84 (75)	2	1	7 (6)	
10	Run 10	88	1.17	84 (74)	2	2	7 (6)	

Table S5. Recyclability data at the complete conversion of GLY.^a

^aReaction conditions: Ru/La(OH)₃ (100 mg, 9 wt% Ru), GLY (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, and 600 rpm.

Entry	RPM	conv.	t	<i>n</i> (H ₂)	Yield of byproducts (% C) ^b					Average
		(%)	(h)	/n(GLY)	SL (sel. %)	SG	PD	SF	CB	reaction rate
										$(mol/g_{Ru}/h \times 10^{-1})$
1	-	91	6	1.1	75 (82)	3	2	7	96	2.07
2	200	93	6	1.3	78 (84)	4	1	7	97	2.12
3	400	>99	5	1.4	82 (82)	2	-	11	96	2.73
4	600	>99	4.5	1.4	86 (86)	-	-	12	98	3.04
5	800	>99	4.5	1.4	84 (84)	-	-	12	96	3.04
aReaction	on condi	tions: Ru	ı/La(C	OH) ₃ (100 m	g, 9 wt% Ru), 9	GLY (13.68 n	nmol), Na	NOH (2	27.36 mmol), water
(41.04 1	mmol),	130 °C. ^t	Yield	was calcula	ited by ¹ H NM	R usir	ng sodit	um acetat	e as a	n internal standard.
CB is c	arbon ba	alance.								

Table S6 Effect of stirring speed on the dehydrogenation of GLY over the Ru/La(OH)3 catalyst.^a

Mass transfer limitations: It has been observed that the GLY conversion and the selectivity for H_2 and SL increased linearly with the increase in stirring speed up to 600 rpm but does not change significantly for stirring speed ≥ 600 rpm, suggesting that external mass transfer limitations are not applicable for the stirring speed of ≥ 600 rpm.^{S34-S35}

Fig. S24 Effect of temperature in hydrogen production from glycerol over the $Ru/La(OH)_3$ catalyst. Reaction conditions: $Ru/La(OH)_3$ (100 mg, 9 wt% Ru), glycerol (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 90-130 °C, and 600 rpm.

Arrhenius equation for the calculation of activation energy

$$k = Ae^{-Ea/RT}$$

In k = In A + (-E_a/RT),

where E_a is the activation energy, R is the molar gas constant (8.314 J/K/mol), and T is the temperature in Kelvin (363 K - 403 K).

(a)	Entry	Т (К)	1/Tx10 ³ (K ⁻¹)	H ₂ (mL) in 1 h	TOF (h ⁻¹)	InTOF (h ⁻¹)
	1	363	2.7548	76	31.0457	3.4354
	2	373	2.6809	100	40.8496	3.7098
	3	383	2.6109	140	57.1895	4.0463
	4	393	2.5445	190	77.6143	4.3517
	5	403	2.4813	258	105.3921	4.6576

Fig. S25 (a) Data table for calculation of activation energy (b) Arrhenius plot of initial TOF values (1 h). Reaction conditions: $Ru/La(OH)_3$ (100 mg, 9 wt% Ru), glycerol (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 90-130 °C, 1 h, and 600 rpm.

Scheme S3 Control experiments to elucidate the reaction intermediates in the catalytic transformation of GLY to H₂ and SL. (a) Catalytic reaction for hydrogen production from glyoxal without catalyst. Reaction conditions: Glyoxal (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, and 600 rpm. Catalytic dehydrogenation from (b) glyoxal, (c) glycolic acid, (d) formic acid, and (e) lactic acid over the Ru/La(OH)₃ catalyst. Reaction conditions: Substrate (13.68 mmol), Ru/La(OH)₃ (100 mg, 9 wt% Ru), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, and 600 rpm.

Fig. S26 ¹H NMR spectra of the crude reaction mixture of the catalytic reaction for hydrogen production from glyoxal without catalyst. Reaction conditions: glyoxal (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, and 600 rpm.

Fig. S27 ¹H NMR spectra of the crude reaction mixture of the catalytic reaction for hydrogen production from glyoxal over $Ru/La(OH)_3$ catalyst. Reaction conditions: $Ru/La(OH)_3$ (100 mg, 9 wt% Ru), glyoxal (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, and 600 rpm.

Fig. S28 ¹H NMR spectra of the crude reaction mixture of the catalytic reaction for hydrogen production from glycolic acid over $Ru/La(OH)_3$ catalyst. Reaction conditions: $Ru/La(OH)_3$ (100 mg, 9 wt% Ru), glycolic acid (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, and 600 rpm.

Fig. S29 ¹H NMR spectra of the crude reaction mixture of the catalytic reaction for hydrogen production from lactic acid over $Ru/La(OH)_3$ catalyst. Reaction conditions: $Ru/La(OH)_3$ (100 mg, 9 wt% Ru), lactic acid (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, and 600 rpm.

Fig. S30 ¹H NMR spectra of the crude reaction mixture of the catalytic reaction for hydrogen production from formic acid over $Ru/La(OH)_3$ catalyst. Reaction conditions: $Ru/La(OH)_3$ (100 mg, 9 wt% Ru), formic acid (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, and 600 rpm.

Fig. S31 Hg poisoning experiment to validate the heterogeneous of $Ru/La(OH)_3$ catalyst.

Fig. S32 Time course plot for the large-scale production of hydrogen gas from ethylene glycol over $Ru/La(OH)_3$ catalyst. Reaction conditions: $Ru/La(OH)_3$ (100 mg, 9 wt% Ru), ethylene glycol (68.4 mmol), NaOH, water (205.2 mmol), 130 °C, and 600 rpm.

Fig. S33 Recyclability experiment for hydrogen production from glycerol over the $Ru/La(OH)_3$ catalyst at (a) initial complete GLY conversion and (b) intermediate GLY conversion (1.5 h). Reaction conditions: $Ru/La(OH)_3$ (100 mg, 9 wt% Ru), GLY (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, and 600 rpm.

Fig. S34 (a) TEM image, and (b) corresponding particle size distribution graph of the recovered $Ru/La(OH)_3$ catalyst after ten cycles.

Fig. S35 P-XRD pattern of the spent Ru/La(OH)₃ catalyst.

Fig. S36 ¹H NMR spectra of the crude reaction mixture of the catalytic reaction for hydrogen production from crude glycerol over the ruthenium catalyst. Reaction conditions: $Ru/La(OH)_3$ (100 mg, 9 wt% Ru), crude GLY (1.25 mL), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, 7 h, and 600 rpm.

Fig. S37 Reaction setup for measuring the volume of gas generated during the catalytic dehydrogenation of glycerol over the ruthenium catalyst (1. Hot plate stirrer, 2. Two neck test tube, 3. Condenser, 4. Gas Burette, 5. Jack).

Fig. S38 ¹H NMR spectra of the crude reaction mixture (a) without sodium acetate as an internal standard, (b) with sodium acetate as an internal standard of the catalytic reaction in $D_2O:H_2O$ (1:9) for hydrogen production from glycerol over La(OH)₃ catalyst. Reaction conditions: Ru/La(OH)₃ (100 mg, 9 wt% Ru), glycerol (13.68 mmol), NaOH (27.36 mmol), water (41.04 mmol), 130 °C, and 4.5 h.

Fig. S39 ¹H NMR spectra of pure lactic acid in D_2O .

Fig. S40 ¹³C NMR spectra of pure lactic acid in D_2O .

References.

- S1 S. Patra, M. K. Awasthi, R. K. Rai, H. Deka, S. M. Mobin and S. K. Singh, *Eur. J. Inorg. Chem.* 2019, 2019, 1046-1053.
- S2 A. Kumar, M. K. Awasthi, B. Priya and S. K. Singh, *ChemCatChem*, 2022, 14, e202101951.
- S3 P. Gogoi, N. Kanna, P. Begum, R. C. Deka, C. V. V. Satyanarayana and T. Raja, ACS Catal., 2020, 10, 2489-2507.
- G. Bergeret and P. Gallezot, Wiley-VCH Verlag, 2008, 738-765.
- S5 P. Gogoi, A. S. Nagpure, P. Kandasamy, C.V. V. Satyanarayana and T. Raja, *Sustain*. *Energy Fuels*, 2020, **4**, 678-690.
- S6 P. J. Dietrich, R. J. Lobo-Lapidus, T. Wu, A. Sumer, M. C. Akatay, B. R. Fingland, N. Guo,
 J. A. Dumesic, C. L. Marshall, E. Stach, J. Jellinek, W. N. Delgass, F. H. Ribeiro and J. T.
 Miller, *Top. Catal.*, 2012, 55, 53-69.
- S7 D. L. King, L. Zhang, G. Xia, A. M. Karim, D. J. Heldebrant, X. Wang, T. Peterson and Y. Wang, *Appl. Catal. B: Environ.*, 2010, 99, 206-213.
- S8 A. Iriondo, V. L. Barrio, J. F. Cambra, P. L. Arias, M. B. Güemez, R. M. Navarro, M. C. Sánchez-Sánchez and J. L. G. Fierro, *Top. Catal.*, 2008, 49, 46-58.
- S9 D. A. Boga, R. Oord, A. M. Beale, Y. M. Chung, P. C. A. Bruijnincx and B. M. Weckhuysen, *ChemCatChem*, 2013, 5, 529-537.
- S10 D. R. Cortright, R. R. Davda and J. A. Dumesic, *Nature*, 2002, **418**, 964-967.
- S11 C. Pendem, B. Sarakar, N. Siddiqui, L. N. S Konathala, C. Baskar and R. Bal, ACS Sustain. Chem. Eng., 2018, 6, 2122-2131.
- S12 M. M. Rahman, *Catal. Lett.*, 2020, **150**, 2674-2687.
- S13 Y. Guo, X. Lui and Y. Wang, Ind. Eng. Chem. Res., 2019, 58, 2749-2758.
- S14 G. Wen, Y. Xu, H. Ma, Z. Xu and Z. Tian, Int. J. Hydrog. Energy, 2008, 33, 6657-6666.

- S15 K. Polychronopoulou, N. D. Charisiou, G. I. Siakavelas, A. A. Alkhoori, V. Sebastian, S. J. Hinder, M. A. Baker and M. A. Goula, *Sustain. Energy Fuels*, 2019, 3, 673-691.
- S16 T. Hirai, N. Ikenaya, T. Miyake and T. Suzuki, *Energy Fuels*, 2005, **19**, 1761-1762.
- S17 S. Adhikari, S. Fernando and A. Haryanto, Catal. Today, 2007, 129, 355-364.
- S18 R. Sundari and P. D. Vaidya, *Energy Fuels*, 2012, 26, 4195-4204.
- K. Kousi, D. I. Kondarides, X. E. Verykios and C. Papadopoulou, *Appl. Catal. A: Gen.*, 2017, 542, 201-211.
- S20 Z. Tang, P. Liu, H. Cao, S. Bels, H. J. Heeres and P. P. Pescarmona, ACS Catal., 2019, 9, 9953-9963.
- S21 Z. Jiang, Z. Zhang, T. Wu, P. Zhang, J. Song, C. Xie and B. Han, *Chem. Asian J.*, 2017, **12**, 1598-1604.
- S22 G. Zhang, X. Jin, Y. Guan, B. Yin, X. Chen, Y. Liu, X. Feng, H. Shan and C. Yang, *Ind. Eng. Chem. Res.*, 2019, 58, 14548-14558.
- S23 G. Bharath, K. Rambabu, A. Hai, H. Taher and F. Banat, *ACS Sustain. Chem. Eng.*, 2020, 8, 7278-7289.
- W. Oberhauser, C. Evangelisti, C. Tiozzo, F. Vizza and R. Psaro, ACS Catal., 2016, 6, 1671-1674.
- S25 J. Ftouni, N. Villandier, F. Auneau, M. Besson, L. Djakovitch and C. Pinel, *Catal. Today*, 2015, 257, 267-273.
- S26 S. M. A. H. Siddiki, A. S. Touchy, K. Kon, T. Toyao and K. I. Shimizu, *ChemCatChem*, 2017, 9, 2816-2821.
- S27 E. P. Maris, W. C. Ketchie, M. Murayama and R. J. Davis, J. Catal., 2007, 251, 281-294.
- S28 L. Shen, Z. Yu, D. Zhang, H. Yin, C. Wang and A. Wang, J. Chem. Technol. Biotechnol., 2019, 94, 204-219.

- S29 M. Checa, F. Auneau, J. H. Carrillo, A. Marinasa, J. M. Marinasa, C. Pinel and F. J. Urbano, *Catal. Today*, 2012, **196**, 91-100.
- S30 X. Jin, L. Dang, J. Lohrman, B. Subramaniam, S. Ren and R. V. Chaudhari, ACS Nano, 2013, 7, 1309-1316.
- S31 D. Roy, B. Subramaniam and R. V. Chaudhari, ACS Catal., 2011, 1, 548-551.
- R. Palacio, S. Torres, S. Royer, A. S. Mamede, D. López and D. Hernández, *Dalton Trans.*, 2018, 47, 4572-4582.
- S33 H. Yin, H. Yin, A. Wang and L. Shen, J. Ind. Eng. Chem. Res., 2018, 57, 226-235.
- S34 D. G. Lahr and B. H. Shanks, *Ind. Eng. Chem. Res.* 2003, **42**, 5467-5472.
- S35 S. Mondal, H. Malviya and P. Biswas, *React. Chem. Eng.* 2019, 4, 595-609.