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Machine learning methods

a) Ridge regression: It is a popular technique used to address multicollinearity in MLR 

models without removing any independent variables. The method involves adding a small 

amount of bias or penalty to improve predictions. This technique is known as Tikhonov 

regularization and is vital in reducing model complexity. The mathematical equation of 

ridge regression is:    where  is 
𝐿(𝑥, 𝑦) = 𝑀𝑖𝑛(

𝑛

∑
𝑖 = 1

(𝑦𝑖 ‒  𝑤𝑖𝑥𝑖)
2 +  𝜆

𝑛

∑
𝑖 = 1

(𝑤𝑖)
2)

𝑤𝑖

weightage of each feature and λ is penalty term.

b) Support Vector Machine (SVM): Support Vector Machines (SVM) is a machine 

learning algorithm that can be used for both classification and regression problems. The 

primary objective of SVM is to draw a decision boundary between observations to 

predict outcomes. In the case of nonlinear SVM, the data is transformed into a feature 

space using a kernel function before mapping with the response. This technique is also 

known as Support Vector Regression (SVR). The mathematical equation for SVM (non-

linear) is represented as follows: , where  is predictions, w is the 𝑦̂ =  𝑤𝑇𝜙(𝑋) + 𝑏 𝑦̂

vector of weights, X is a vector of input features,  is a kernel function and b is bias 𝜙

Support Vector Machines (SVM) methods are used in both two-dimensional and higher-

order spaces with a large number of features. In SVM, the method considers both 

margins and hyperplanes for predictions. The margin refers to the area between the 

decision boundary and the closest training compound, while the hyperplane is used to 

predict class boundaries. The margin is represented by the following equation: 

. SVM tries to maximize the distance between the two closest training 
𝑚𝑎𝑟𝑔𝑖𝑛 =  

1

𝑤𝑇𝑤

compounds on either side of the decision boundary.

c) Linear Support Vector Machine (LSVM): The LSVM (Linear Support Vector 

Machine) algorithm is a machine learning algorithm used for the classification of data. It 

is a powerful and popular tool in various fields, including image recognition, natural 

language processing, and bioinformatics. The LSVM algorithm involves mapping the 

input data domain to a response data space, where the data can be linearly classified 
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without any transformation. This is accomplished by finding the hyperplane that best 

separates the data points of different classes. The algorithm aims to find the hyperplane 

that maximizes the margin, which is the distance between the hyperplane and the closest 

data points of each class. The generalized equation for LSVM is:  .𝑦̂ =  𝑤𝑇𝑋 + 𝑏

d) Random forest (RF): Random forest (RF) is a machine learning algorithm that combines 

the outcomes of multiple decision tree models to provide more accurate and stable 

predictions. This approach helps to overcome the overfitting problem common with 

decision tree models. RF is based on an ensemble learning method called Bagging 

(Bootstrap Aggregating), which is a resampling technique applied to a dataset. In 

bootstrapping, observations are randomly selected with replacement, and random feature 

subsets are chosen. Bagging creates a large number of datasets by bootstrapping the 

original dataset, builds multiple decision tree models using these datasets, and finally 

takes the average of their predictions.

e) Gradient boosting (GB): Boosting is a machine learning technique that combines 

multiple weak learners to form a strong learner. Gradient boosting (GB) is a specific type 

of boosting method that builds decision trees sequentially, with each subsequent tree 

trying to correct the errors of its predecessor. 

f) XGBoost: The XGBoost algorithm was developed by researchers at the University of 

Washington as a way to improve upon the Gradient Boosting (GB) algorithm. GB 

becomes time-consuming when dealing with thousands of features, as it searches for the 

best way to split the node of a decision tree across all possible options. XGBoost 

overcomes this by taking into account the distribution of features across all data points in 

a single leaf node, which reduces the search space. While it can't generate multiple 

decision trees in parallel, it can generate multiple branches of a decision tree 

simultaneously.

g) Adaboost: AdaBoost is a powerful ensemble learning technique primarily used for 

classification tasks but also can be applied to regression tasks. It operates by combining 

multiple weak classifiers to create a strong classifier. The essence of AdaBoost lies in its 

ability to adaptively adjust the weights of misclassified instances, allowing subsequent 

weak learners to focus more on difficult examples, thus improving overall performance. 
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During each iteration, AdaBoost assigns weights to each training instance based on its 

classification accuracy in the previous iteration. Misclassified instances are assigned 

higher weights, effectively forcing subsequent weak learners to focus more on them.

QSPR model development

A 10-descriptor MLR model for decomposition temperature (Tdec) was selected after the feature 

selection process by performing a grid-search using the Best Subset Selection tool v2.1 available 

from http://teqip.jdvu.ac.in/QSAR_Tools/. The same descriptor set was used to develop the final 

PLS QSAR model with 5 latent variables (LVs) which are optimized by LOO Q2. The equation 

for the model is given in Table S1. The training set of the melting point (Tm) temperature data 

set was subjected to a forward step-wise feature selection process to enlist the prominent features 

closely related to the melting point. A 29-descriptor MLR QSPR model was developed to predict 

the melting point temperature of the compounds. The MLR equation for the model is shown in 

Table S1. The feature selection of the density data set was performed through step-wise 

selection using the training set. After the feature selection process, a 6-descriptor MLR model 

was prepared and further, PLS regression was used to develop the QSPR model with 5 LVs. The 

PLS equation of the model is given in Table S1. For the enthalpy of formation ( ), a step-∆𝐻𝑓°

wise feature selection process was performed after the division of the data set. The pool of 

descriptors so obtained from the step-wise selection was then used to develop several MLR 

models through a grid-search approach using a java based tool Best Subset Selection tool v2.1 

available from http://teqip.jdvu.ac.in/QSAR_Tools/. An 11-descriptor MLR model was selected 

based on the cross-validation result (Q2
LOO), and further with the same set of descriptors, a PLS 

QSPR model was developed with 3 LVs. The PLS equation is given in Table S1.

http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/


S5

Table S1: Model equations and validation metrics of the developed QSPR models

Property Model equation Training set 
metrics Test set metrics

Tdec

(PLS model)

𝑇𝑑𝑒𝑐
= 436.990 + 3.952 × 𝐶% ‒ 142.266 × 𝐵01[𝑂 ‒ 𝑂] ‒ 28.762 × 𝐵03[𝑁 ‒ 𝑂] + 9.558 × 𝐻𝑦 ‒ 14.993 × 𝐿𝑂𝐺𝑃99 + 34.492 ×

𝑛𝐴𝑟𝑁𝑂2 + 24.399 × 𝐶 ‒ 005 ‒ 25.504 × 𝑛𝑁 +‒ 39.061 × 𝐵01[𝑁 ‒ 𝑁] ‒ 34.360 × 𝐵01[𝑁 ‒ 𝑂]

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 10, 𝐿𝑉𝑠 = 5

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 424

𝑅2 = 0.578
𝑄 2

𝐿𝑂𝑂 = 0.557
𝑀𝐴𝐸𝑡𝑟 = 45.257
𝑅𝑀𝑆𝐸𝐶 = 57.971

𝑛𝑡𝑒𝑠𝑡 = 141

𝑄 2
𝐹1 = 0.621

𝑄 2
𝐹2 = 0.621

𝑀𝐴𝐸𝑡𝑒 = 44.919
𝑅𝑀𝑆𝐸𝑃 = 54.814

Tm

(MLR model)

𝑇𝑚
= 291.1 + 13.46 × 𝑈𝑖 +  22.98 × 𝑛𝐻𝐷𝑜𝑛 +  15.08 × 𝑅𝑏𝑟𝑖𝑑 +  26.5 × 𝐵03[𝐶 ‒ 𝑂] +  19.12 × 𝑛𝑁 +  50 × 𝑛𝐴𝑟𝐶𝑂𝑂𝐻 +  2.1
× 𝐴𝑀𝑊 ‒  0.212 × 𝑇(𝑁..𝑂) +  5.27 × 𝑅𝑝𝑟𝑖𝑚 +  23 × 𝑛𝑅𝐶𝑂𝑂𝐻 ‒  0.28 × 𝐹10[𝐶 ‒ 𝑂] +  6.95 × 𝑁𝑑𝑠𝑠𝐶 ‒  31.3
× 𝑛𝑅
= 𝐶𝑝 ‒  4.25 × 𝐹07[𝐶 ‒ 𝑁] ‒  38.1 × 𝑚𝑖𝑛𝑠𝑠𝑠𝐵 +  1.539 × 𝑀𝐿𝑂𝐺𝑃2 ‒  350 × 𝑀𝑖 ‒  3.69 × 𝑛𝐶𝑏𝐻 ‒  16.7 ×

𝑀𝑎𝑥𝑠𝑠𝐶𝐻2 +  11.57 × 𝑁 ‒ 072 +  1.79 × 𝑂% ‒  3.76 × 𝐹05[𝑂 ‒ 𝑂] ‒  1.3 × 𝐹10[𝐶 ‒ 𝐶] +  32.7 × 𝐵02[𝐶 ‒ 𝐶] 
‒  14.8 × 𝐹02[𝑂 ‒ 𝐶𝑙] +  86 × 𝑁𝑠𝑠𝑠𝑠𝑁 +  +  1.79 × 𝑆𝑡𝑁 ‒  4.64 × 𝐹10[𝑂 ‒ 𝑂] ‒  9.4 × 𝑛𝑂𝐻𝑠

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 29

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 14750

𝑅2 = 0.679
𝑄 2

𝐿𝑂𝑂 = 0.676
𝑀𝐴𝐸𝑡𝑟 = 39.633
𝑅𝑀𝑆𝐸𝐶 = 51.686

𝑛𝑡𝑒𝑠𝑡 = 4917

𝑄 2
𝐹1 = 0.670

𝑄 2
𝐹2 = 0.670

𝑀𝐴𝐸𝑡𝑒 = 39.626
𝑅𝑀𝑆𝐸𝑃 = 52.501

Density
(PLS model)

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 1.235 + 0.120 × 𝐴𝑀𝑊 ‒ 1.409 × 𝑀𝑝 + 0.015 × 𝑛𝑋 ‒ 0.008 × 𝑋% + 0.196 × 𝑀𝐶𝐷 ‒ 0.015 × 𝑁𝑅𝑆

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 6, 𝐿𝑉𝑠 = 5

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 9604

𝑅2 = 0.924
𝑄 2

𝐿𝑂𝑂 = 0.922
𝑀𝐴𝐸𝑡𝑟 = 0.037
𝑅𝑀𝑆𝐸𝐶 = 0.053

𝑛𝑡𝑒𝑠𝑡 = 3201

𝑄 2
𝐹1 = 0.928

𝑄 2
𝐹2 = 0.928

𝑀𝐴𝐸𝑡𝑒 = 0.037
𝑅𝑀𝑆𝐸𝑃 = 0.051
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∆𝐻𝑓°
(PLS model)

∆𝐻𝑓°
=‒ 25.420 ‒ 196.661 × 𝑛𝐹 ‒ 71.385 × 𝐹01[𝐶 ‒ 𝑂] ‒ 23.045 × 𝑛𝐶𝑠𝑝3 + 91.062 × 𝑛𝐶𝐼𝐶 + 187.180 × 𝐹01[𝑁 ‒ 𝐹] ‒ 115.277
× 𝑂 ‒ 058 + 57.671 × 𝐹01[𝑁 ‒ 𝑁] ‒ 83.572 × 𝑁𝑠𝑂𝐻 + 32.203 × 𝑁𝑑𝑠𝐶𝐻 + 128.918 × 𝑛𝐶𝑠𝑝 + 32.832 × 𝑛𝑁

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 11, 𝐿𝑉𝑠 = 3

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 1924

𝑅2 = 0.967
𝑄 2

𝐿𝑂𝑂 = 0.966
𝑀𝐴𝐸𝑡𝑟 = 53.553
𝑅𝑀𝑆𝐸𝐶 = 78.571

𝑛𝑡𝑒𝑠𝑡 = 643

𝑄 2
𝐹1 = 0.932

𝑄 2
𝐹2 = 0.931

𝑀𝐴𝐸𝑡𝑒 = 47.903
𝑅𝑀𝑆𝐸𝑃 = 67.412
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Table S2: Definitions of descriptors of the QSPR models

Descriptors Definition
C% Percentage of C atoms

B01[O-O] Presence/absence of O – O at topological distance 1
B03[N-O] Presence/absence of N – O at topological distance 3

Hy Hydrophilic factor
LOGP99 Wildmann-Crippen octanol-water partition coeff. (logP)
NArNO2 Number of nitro groups (aromatic)

C-005 CH3X
nN Number of N atoms

B01[N-N] Presence/absence of N – N at topological distance 1
B01[N-O] Presence/absence of N – O at topological distance 1

Ui Unsaturation index
nHDon Number of donor atoms for H-bonds (N and O)
Rbrid Ring bridge count

B03[C-O] Presence/absence of C – O at topological distance 3
NArCOOH Number of carboxylic acids (aromatic)

AMW Average molecular weight
T(N..O) Sum of topological distances between N..O
Rprim Ring perimeter

nRCOOH Number of carboxylic acids (aliphatic)
F10[C-O] Frequency of C – O at topological distance 10

NdssC Number of atoms of type dssC
nR=Cp Number of terminal primary C(sp2)

F07[C-N] Frequency of C – N at topological distance 7
minsssB Mimimum sssB

MLOGP2 Squared Moriguchi octanol-water partition coeff. (logp^2)
Mi Mean first ionization potential (scaled on Carbon atom)

nCbH Number of unsubstituted benzene C(sp2)
MaxssCH2 Maximum ssCH2

N-072 RCO-N< / >N-X=X
O% Percentage of O atoms

F05[O-O] Frequency of O – O at topological distance 5
F10[C-C] Frequency of C – C at topological distance 10
B02[C-C] Presence/absence of C – C at topological distance 2
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F02[O-Cl] Frequency of O – Cl at topological distance 2
NssssN+ Number of atoms of type ssssN+

StN Sum of tn E-states
F10[O-O] Frequency of O – O at topological distance 10

nOHs Number of secondary alcohols
Mp Mean atomic polarizability (scaled on Carbon atom)
nX Number of halogen atoms
X% Percentage of halogen atoms

MCD Molecular cyclized degree
NRS Number of ring systems
nF Number of Fluorine atoms

F01[C-O] Frequency of C – O at topological distance 1
nCsp3 Number of sp3 hybridized Carbon atoms
nCIC Number of rings (cyclomatic number)

F01[N-F] Frequency of N – F at topological distance 1
F01[N-N] Frequency of N – N at topological distance 1

O-058 =O
NsOH Number of atoms of type sOH
NdsCH Number of atoms of type dsCH
nCsp Number of sp hybridized Carbon atoms
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Figure S1: AD plot for Tdec



S10

Figure S2: AD plot for Density
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Figure S3: AD plot for ΔHf˚
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Figure S4: Williams plot for Tm

Figure S5: AD status for individual models. It represents the percentage (%) of compounds 

as outliers in training and test sets of the respective model.
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Figure S6: Loading Plots for different PLS q-RASPR models
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Figure S7: VIP plots for different PLS models
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Figure S8: Coefficient Plots for each PLS model
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Figure S9: PLS Score Plots for respective models
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Table S3: Comparison between the performances of different q-RASPR models for decomposition temperature (Tdec)

Training set statistics Test set statistics
Tdec

Models R2 Q2
LOO MAEC

MAEC± SEM

(5-foldCV)

MAEC± SEM

(10-foldCV)
RMSEC Q2

F1 Q2
F2 MAEP RMSEP

RF 0.935 0.527 0.187 0.54 ± 0.036 0.53 ± 0.035 0.254 0.633 0.633 0.477 0.604

AB 0.632 0.496 0.505 0.58 ± 0.036 0.56 ± 0.028 0.606 0.564 0.564 0.557 0.658

GB 0.853 0.559 0.295 0.54 ± 0.036 0.53 ± 0.038 0.383 0.594 0.594 0.507 0.635

XGB 0.937 0.501 0.189 0.56 ± 0.040 0.55 ± 0.035 0.250 0.591 0.591 0.523 0.637

SVM 0.687 0.544 0.409 0.54 ± 0.031 0.54 ± 0.032 0.559 0.674 0.674 0.456 0.569

LSVM 0.613 0.605 0.469 0.49 ± 0.031 0.48 ± 0.028 0.621 0.662 0.662 0.468 0.574

RR 0.621 0.600 0.474 0.50 ± 0.027 0.49 ± 0.028 0.615 0.674 0.674 0.468 0.569

PLS 0.620 0.600 0.474 0.49 ± 0.027 0.49 ± 0.028 0.616 0.676 0.676 0.463 0.567



S18

Table S4: Comparison between the performances of different q-RASPR models for density (Den)

Training set statistics Test set statistics
Density

Models R2
R2 ± SEM

(5-fold CV)

R2± SEM

(10-fold CV)
MAEC

MAEC ± SEM

(5-fold CV)

MAEC ± SEM

(10-fold CV)
RMSEC Q2

F1 Q2
F2 MAEP RMSEP

RF 0.991 0.92 ± 0.004 0.92 ± 0.006 0.066 0.19±0.009 0.19±0.006 0.931 0.936 0.931 0.182 0.250

AB 0.913 0.89 ± 0.013 0.88 ± 0.009 0.224 0.23±0.004 0.23±0.006 0.295 0.905 0.905 0.227 0.305

GB 0.947 0.92 ± 0.004 0.92 ± 0.006 0.172 0.19±0.004 0.19±0.006 0.230 0.932 0.932 0.184 0.257

XGB 0.911 0.87 ± 0.004 0.88 ± 0.009 0.205 0.23±0.009 0.22±0.009 0.298 0.905 0.905 0.215 0.303

SVM 0.915 0.87 ± 0.022 0.88 ± 0.016 0.172 0.19±0.009 0.19±0.009 0.292 0.916 0.916 0.178 0.286

LSVM 0.940 0.93± 0.004 0.92 ± 0.003 0.178 0.18±0.004 0.18±0.006 0.247 0.939 0.939 0.177 0.245

RR 0.940 0.93 ± 0.004 0.93 ± 0.006 0.179 0.18±0.004 0.18±0.006 0.244 0.939 0.939 0.178 0.243

PLS 0.940 0.93 ± 0.004 0.92 ± 0.006 0.180 0.18±0.004 0.18±0.006 0.246 0.939 0.939 0.180 0.244



S19

Table S5: Comparison between the performance of different q-RASPR models forthe heat of formation (ΔHf˚)

Training set statistics Test set statistics
ΔHf˚

Models R2 Q2
LOO

R2 ± SEM

(5-fold CV)

R2 ± SEM

(10-fold CV)
MAEC

MAEC ± SEM

(5-foldCV)

MAEC ± SEM

(10-foldCV)
RMSEC Q2

F1 Q2
F2 MAEP RMSEP

RF 0.991 0.934 0.86 ± 0.004 0.87 ± 0.013 0.054 0.18± 0.0031 0.17± 0.028 0.096 0.913 0.913 0.123 0.1758

AB 0.926 0.905 0.82 ± 0.022 0.83 ± 0.016 0.190 0.22± 0.027 0.21± 0.022 0.271 0.879 0.879 0.156 0.207

GB 0.968 0.933 0.88 ± 0.009 0.88 ± 0.016 0.118 0.17± 0.027 0.16± 0.025 0.180 0.925 0.925 0.114 0.163

XGB 0.935 0.897 0.82 ± 0.027 0.79 ± 0.028 0.146 0.20± 0.036 0.20± 0.028 0.255 0.899 0.899 0.137 0.189

SVM 0.827 0.761 0.74 ± 0.094 0.79 ± 0.054 0.154 0.21± 0.058 0.15± 0.044 0.416 0.928 0.928 0.110 0.159

LSVM 0.942 0.942 0.91 ± 0.013 0.90 ± 0.013 0.141 0.14± 0.018 0.19±0.019 0.240 0.930 0.930 0.108 0.157

RR 0.943 0.942 0.91 ± 0.013 0.90 ± 0.013 0.142 0.14± 0.018 0.14± 0.016 0.239 0.931 0.931 0.108 0.156

PLS 0.943 0.942 0.91 ± 0.013 0.90 ± 0.013 0.143 0.15± 0.018 0.14± 0.016 0.239 0.931 0.931 0.109 0.156
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