Supporting Information

Universal synthesis strategy for preparation of transition metal oxide electrocatalysts doped with noble metal single atoms for oxygen evolution reaction

Jingyao Wang, Yiming Zhu, Xuepeng Zhong, Zhiwei Hu, Wei-Hsiang Huang, Chih-Wen Pao, Hongfei Cheng^{*}, Nicolas Alonso-Vante^{*}, and Jiwei Ma^{*}

Figures:

Figure S1. X-ray diffraction (XRD) patterns of (a) Ir-Co₃O₄, Ru-Co₃O₄, Pd-Co₃O₄, and Co₃O₄. (b) Ir-NiO, and Ir-Fe₂O₃.

Figure S2. The wavelet transforms for the k^3 -weighted EXAFS signals of (a-c) Ir-Co₃O₄, IrO₂, and Ir foil. (d-f) Ru-Co₃O₄, RuO₂, and Ru foil. (g-i) Pd-Co₃O₄, PdO, and Pd foil. (j-l) Ir-NiO, IrO₂, and Ir foil. (m-o) Ir-Fe₂O₃, IrO₂, and Ir foil.

Figure S3. Photoemission lines: (a, d) Ru 3p of Ru-Co₃O₄ and RuO₂. (b, e) Co 2p and (c,f) O 1s of Ru-Co₃O₄ and Co₃O₄. (g, j) Pd 3*d* of Pd-Co₃O₄, and PdO. (h, k) Co 2p, and (i, l) O 1s of Pd-Co₃O₄ and Co₃O₄. (m, p) Ir 4*f* of Ir-NiO, and IrO₂. (n, q) Ni 2p, and (o, r) O 1s of Ir-NiO, and NiO. (s, v) Ir 4*f* of Ir-Fe₂O₃, and IrO₂. (t, w) Fe 2p, and (u, x) O 1s of Ir-Fe₂O₃, and Fe₂O₃.

Figure S4. SEM-EDS spectra of (a) Ru-Co₃O₄, (b) Pd-Co₃O₄, (c) Ir-NiO, and (d) Ir-Fe₂O₃.

Figure S5. Co-*K* edge EXAFS spectra of Ir-Co₃O₄ and Co foil.

Figure S6. The normalized Ir- L_3 edge XANES spectra of (a) Ir-NiO, Ir foil, and IrO₂. (b) Ir-Fe₂O₃, Ir foil, and IrO₂. (c) The normalized Ru-*K* edge XANES spectra of Ru- Co₃O₄, Ru foil, and RuO₂. (d) The normalized Pd-*K* edge XANES spectra of Pd-Co₃O₄, Pd foil, and PdO.

Figure S7. LSV curves of (a) Ir-Co₃O₄, Ir-NiO, Ir-Fe₂O₃, and IrO₂, (b) Ir-Co₃O₄, Ru-Co₃O₄, Pd-Co₃O₄, and Co₃O₄ collected at a scanning rate of 5 mV s⁻¹ in 0.5 M H₂SO₄ solution.

Figure S8. The equivalent circuit section applied in the EIS testing of the catalysts. Electrolyte, Charge transfer, and Warburg resistance are R_s , R_{ct} , and R_w , respectively. The double layer capacitance is C_{dl} .

Figure S9. TEM image of Co₃O₄.

Figure S10. Electrochemical cyclic voltammetry scans were recorded for (a) Ir-Co₃O₄, (b) IrO₂, and (c) Co₃O₄. Scan rates are 20, 40, 60, 80 and 100 mV s⁻¹. (d) Linear fitting of the capacitive currents versus cyclic voltammetry scan rates for these catalysts.

Figure S11. (a) TEM image, (b) HR-TEM image, (c) EDS elemental mappings of Ir-Co₃O₄ after stability test. (d) Ir 4f, (e) Co 2p, (f) O1s XPS spectrum of Ir-Co₃O₄ before and after stability test.

Figure S12. Electrochemical cyclic voltammetry scans were recorded for (a) Ir-Co₃O₄, (b) Co₃O₄, and (c) IrO₂. Scan rates are 20, 40, 60, 80, and 100 mV s⁻¹. (d) Linear fitting of the capacitive currents versus cyclic voltammetry scan rates for these catalysts. (e) The calculated ECSA values for Ir-Co₃O₄, IrO₂, and Co₃O₄ in 1.0 M KOH.

Tables:

Table S1. Fit goodness and R-factor of XRD refinements for Ir-Co₃O₄ and Co₃O₄.

Compounds	R _F	R _B	R _P	R _{WP}	χ^2
Ir-Co ₃ O ₄	0.309%	0.314%	0.286%	0.462%	3.46
Co ₃ O ₄	0.816%	0.598%	0.228%	0.293%	1.64

Table S2. Results of XRD refinements for Ir-Co₃O₄ and Co₃O₄.

Compounds	a (Å)	b (Å)	c (Å)	V (Å ³)
Ir-Co ₃ O ₄	8.102	8.102	8.102	531.9
Co ₃ O ₄	8.086	8.086	8.086	528.7

Compounds	Element	Atomic%
	Ir	1.86
Ir-Co ₃ O ₄	Co	28.44
	Ο	69.70
	Ru	1.41
Ru-Co ₃ O ₄	Co	21.24
	О	77.35
	Pd	1.18
Pd-Co ₃ O ₄	Co	31.65
	О	67.17
	Ir	0.75
Ir-NiO	Ni	41.66
	О	57.58
	Ir	1.39
Ir-Fe ₂ O ₃	Fe	26.06
	0	72.55

Table S3. XPS quantification data for all elements in Ir-Co₃O₄, Ru-Co₃O₄, Pd-Co₃O₄, Ir-NiO, and Ir-Fe₂O₃.

Table S4. Fitting parameters of EIS for Ir-Co₃O₄, IrO₂, and Co₃O₄ in 0.5 M H_2SO_4 .

Samples	Rs (Ω)	Rct (Ω)	C _{dl} (F s ⁿ⁻¹)	s (Ω s ^{-1/2})
Ir-Co ₃ O ₄	5.1	16.6	0.0498	0.0498
IrO ₂	4.0	220.0	0.1991	0.0498
Co ₃ O ₄	5.1	5271.0	0.0996	4.5658

Catalysts	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	Ref.
Rh ₂₂ Ir ₇₈ alloy NPs	292	101	[1]
Porous carbon-coated IrCo	270	71.8	[2]
IrO ₂ /CNT	293	67	[3]
TiN/IrO ₂	313	65.5	[4]
Ir-SA@Fe@NCNT	250	58.2	[5]
IrO ₂ /GCNa	276	57	[6]
Ir ₆ Ag ₉ nanotubes	297	60	[7]
Amorphous IrO _x NSs	250	47	[8]
Sr_2IrO_4	287	45	[9]
Li-IrO _x	290	39	[10]
Ir-Co ₃ O ₄	268	38	This work

Table S5. Comparisons of the Tafel slopes and overpotentials at the current density of 10 mA cm^{-2} of reported Ir-based catalysts for OER in 0.5 M H₂SO₄.

Table S6. Fitting parameters of EIS for Ir-Co₃O₄, IrO₂, and Co₃O₄ in 1.0 M KOH.

Samples	Rs (Ω)	Rct (Ω)	C _{dl} (F s ⁿ⁻¹)	s (Ω s ^{-1/2})
Ir-Co ₃ O ₄	4.3	14.6	0.0498	9.6399
IrO ₂	3.9	102.2	0.0896	6.2364
Co_3O_4	4.0	445.3	0.0996	0.1216

References

[1] H. Guo, Z. Fang, H. Li, D. Fernandez, G. Henkelman, S. M. Humphrey, G. Yu, ACS Nano 2019, 13, 13225.

[2] X. Sun, F. Liu, X. Chen, C. Li, J. Yu, M. Pan, *Electrochimica Acta* 2019, 307, 206.

[3] J. Guan, D. Li, R. Si, S. Miao, F. Zhang, C. Li, ACS Catalysis 2017, 7, 5983.

[4] H. Zhang, Z. Y. Yuan, B. Li, X. Jin, presented at *the 2019 Chinese Control And Decision Conference (CCDC)*, 3-5 June 2019, **2019**.

[5] F. Luo, H. Hu, X. Zhao, Z. Yang, Q. Zhang, J. Xu, T. Kaneko, Y. Yoshida, C. Zhu, W. Cai, *Nano Letters* **2020**, 20, 2120.

- [6] J. Chen, P. Cui, G. Zhao, K. Rui, M. Lao, Y. Chen, X. Zheng, Y. Jiang, H. Pan, S. X. Dou, W. Sun, *Angewandte Chemie International Edition* **2019**, 58, 12540.
- [7] M. Zhu, Q. Shao, Y. Qian, X. Huang, *Nano Energy* **2019**, 56, 330.
- [8] B. Jiang, J. Kim, Y. Guo, K. C. W. Wu, S. M. Alshehri, T. Ahamad, N. Alhokbany, J.

Henzie, Y. Yamachi, Catalysis Science & Technology 2019, 9, 3697.

- [9] A. L. Strickler, D. Higgins, T. F. Jaramillo, *ACS Applied Energy Materials* **2019**, 2, 5490.
- [10] J. Gao, C.-Q. Xu, S.-F. Hung, W. Liu, W. Cai, Z. Zeng, C. Jia, H. M. Chen, H. Xiao, J.
- Li, Y. Huang, B. Liu, Journal of the American Chemical Society 2019, 141, 3014.