Supporting Information

A multi-metal (Fe, Cu, Zn) coordinated hollow porous dodecahedron nanocage catalyst reduces oxygen in Zn-air battery

Yanan Pan^{a,1}, Qi Yang^{a,1}, Xiaoying Liu^a, Fan Qiu^a, Junjie Chen^a, Mengdie Yang^a, Yang Fan^a, Haiou Song^b, and Shupeng Zhang^{a,*}

^a School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China

^b School of Environment, Nanjing Normal University, Nanjing, 210097, PR China

¹ Y.N Pan and Q. Yang contributed equally to this work.

1. Experimental

1.1 Chemicals and Materials

KCl, Zinc nitrate hexahydrate, NaCl were purchased from Sinopharm Chemical Reagent Co., Ltd. Commercial 20 wt% Pt/C catalyst and (5%) Nafion solution were ordered from Sigma-Aldrich. Iron acetylacetonate, cupric nitrate, 2-methylimidazole, ethyl alcohol, methanol were obtained from Aladdin Chemistry Co., Ltd. All the materials were analytical reagents and were used without further purification. All aqueous solutions were prepared with secondary distilled water.

1.2 Electrochemical measurements

The electrocatalytic performance was evaluated on a CHI760E electrochemical analyzer (Chenhua Co., Shanghai, China). A conventional three-electrode cell was used, including a glassy carbon electrode (GCE) with a diameter of 4 mm was employed as the working electrode, a Pt wire as a counter electrode, and an Ag/AgCl (3M KCl) electrode as a reference electrode. And all of the potentials recorded in this part are given with respect to a reversible hydrogen electrode (RHE) by the formula E (RHE) = E(Ag/AgCl) + 0.0591pH + 0.197.

For the preparation of the catalyst, 4 mg of the catalyst was added to the water/ethanol/nafion (5:5:1) mixed solution (1.1 mL) to form a uniform ink dispersion. 5 μ L of ink was dropped onto a GCE and then added 5 μ L of ink after it dried. 4 mg of the 20% Pt/C was added to the water /nafion (10:1) mixed solution (1.1 mL). 10 μ L of uniform ink was dropped onto a GCE and dried at room temperature. Cyclic voltammetry (CV) was carried out in the potential range from -0.8 to 0.2 V vs. AgCl at a scan rate of 50 mV/s. LSV was performed in same potential range as CV at various rotation rates (400–2400 rpm) in 0.1 M KOH. The durability test for methanol, methanol (1-3 M) was added to the 0.1 M KOH electrolyte around 1000 s, and the current was collected at a rotation speed of 1600 rpm at –0.1/-0.4 V (vs. Ag/AgCl). The accelerated degradation test (ADT) was carried out by testing the LSV curve before and after 5000 cycles from 0 V to -0.4 V at a scan rate of 100 mV/s. All tests were performed under N₂ or O₂-saturated conditions. Electrochemical impedance spectroscopy (EIS): For the collection of EIS

spectra, the initial potential was -0.15 V (vs. Ag/AgCl). The amplitude was 0.005 V and the frequency was from 0.005 Hz to 1000 Hz.

The kinetic-limiting current (J_k) and the number of transferred electrons (n) can be calculated according to Koutecky-Levich (K-L) equation,

$$\frac{1}{J} = \frac{1}{J_{k}} + \frac{1}{J_{d}} = \frac{1}{J_{k}} + \frac{1}{B \, \varpi^{1/2}}$$
(1)
$$B = 0.2nF(D_{0})^{2/3} \nu^{-1/6} C_{0}$$
(2)

where j, j_d and ω are the detected current density, diffusion-limiting current density and angular velocity of electrode rotation, respectively, F is the Faraday constant (96,485 C/mol), D_0 is the diffusion coefficient (1.93 × 10⁻⁵ cm²/s) of O₂ in 0.1 M KOH aqueous solution, v is the kinematic viscosity (0.011 cm²/s) of the aqueous solution, C_0 is the bulk concentration of O₂ (1.2 × 10⁻⁶ mol/cm³) in the electrolyte. ¹.

Figure S1. XRD spectra of Fe/Cu-ZIF-8, Fe-ZIF-8, Cu-ZIF-8 and ZIF-8.

Figure S2 (a) Nitrogen adsorption and desorption isotherms of Fe₃O₄/CuNCs/ZnN_x-PHNC, Fe₃O₄/ZnN_x-PHNC, CuNCs/ZnN_x-PNC and ZnN_x-PNC; (b) BET histograms; (c) pore size distribution.

Figure S3 (a) XPS survey spectra; (b) XPS Fe 2p spectra; (c) XPS Cu 2p spectra and (d) XPS Zn 2p

spectra.

Figure S4. (a-c) SEM images of Fe-/Cu-ZIF-8 at different resolutions; (d-f) SEM images of Fe-ZIF-8 at different resolutions; (g-i) SEM images of Cu-ZIF-8 at different resolutions; (j-l) SEM images of ZIF-8 at different resolutions.

Figure S5 (a-c) SEM images of Fe₃O₄/CuNCs/ZnN_x-PHNC at different resolutions; (d-f) SEM images of Fe₃O₄/ZnN_x-PHNC at different resolutions; (g-i) SEM images of CuNCs/ZnN_x-PNC at different resolutions; (j-l) SEM images of ZnN_x-PNC at different resolutions.

Figure S6. (a-c) TEM images of Fe_3O_4/ZnN_x -PHNC at different resolutions; (d-f) TEM images of CuNCs/ZnN_x-PNC at different resolutions; (g-i) TEM images of ZnN_x-PNC at different resolutions.

Figure S7. CV curves of (a) Fe₃O₄/CuNCs/ZnN_x-PHNC; (b) Fe₃O₄/ZnN_x-PHNC; (c) CuNCs/ZnN_x-

PNC and (d) ZnN_x-PNC.

Figure S8 (a, b) Different rotational speeds and transferred electron number curves of Fe₃O₄/CuNCs/ZnN_x-PHNC; (c, d) Fe₃O₄/ZnN_x-PHNC; (e, f) CuNCs/ZnN_x-PNC and (g, h) ZnN_x-

PNC.

Figure S9. (a) Fe₃O₄/CuNCs/ZnN_x-PHNC; (b) Fe₃O₄/ZnN_x-PHNC; (c) CuNCs/ZnN_x-PNC and (d) CV plots of different scan rates of ZnN_x-PNC in 0.1 mol/L KOH at non-Faraday potentials from 1 V to 1.2 V (vs. RHE).

Figure S10. (a-c) Methanol resistance experiments of Fe₃O₄/CuNCs/ZnN_x-PHNC and Pt/C at different concentrations.

Figure S11 Multiplicative properties of Fe₃O₄/CuNCs/ZnN_x-PHNC-based ZAB.

Figure S12. Charge/discharge curves of Fe₃O₄/CuNCs/ZnN_x-PHNC-based ZAB at different current densities.

	Zinc Nitrate Hexahydrate	Dimethylimidazole	Iron Acetylacetonate	Copper Nitrate
Fe ₃ O ₄ /CuNCs/ZnN _x -PHNC	\checkmark	\checkmark	\checkmark	
Fe ₃ O ₄ /ZnN _x -PHNC	\checkmark	\checkmark	\checkmark	
CuNCs/ZnN _x -PNC		\checkmark		
ZnN _x -PNC	\checkmark	\checkmark		

 Table S1. Raw Materials and the corresponding obtained materials.

 Table S2. BET and pore related data for different materials.

Samples	BET (m²/g)	t-Plot Micropore Area (m²/g)	BJH Adsorption average pore diameter (nm)	BJH Adsorption cumulative volume of pores (cm³/g)
Fe3O4/CuNCs/ZnNx- PHNC	702	519.98	9.5	0.28
Fe ₃ O ₄ /ZnN _x -PHNC	773	548.82	10.7	0.42
CuNCs/ZnNx-PNC	853	627.22	6.0	0.23
ZnN _x -PNC	894	594.51	15.3	0.83

Samples	С	Ν	0	Zn	Fe	Cu
	(atom %)					
ZnN _x -PNC	86.74	6.69	5.98	0.59	-	-
Fe ₃ O ₄ /ZnN _x -PHNC	84.02	6.11	8.92	0.19	0.73	-
CuNCs/ZnNx-PNC	86.31	5.22	7.67	0.72	-	0.07
Fe ₃ O ₄ /CuNCs/ZnN _x -PHNC	83.01	6.67	9.23	0.08	0.95	0.07

Table S3. XPS elemental analysis of ZnN_x-PNC, Fe₃O₄/ZnN_x -PHNC, CuNCS/ZnN_x-PNC and Fe₃O₄/ CuNCs/ZnN_x -PHNC.

	sp ² C=C	sp ³ C-C	C-N	C-0
Samples	(atom %)	(atom %)	(atom %)	(atom %)
ZnNx-PNC	39.49	32.65	16.99	10.87
Fe ₃ O ₄ /ZnN _x -PHNC	36.86	33.31	18.06	11.77
CuNCs/ZnN _x -PNC	42.31	31.59	16.55	9.55
Fe ₃ O ₄ /CuNCs/ZnN _x -PHNC	42.09	29.35	21.82	6.73

Table S4. The relative contents of different C-sites derived from high-resolution XPS scans of C1s.

Table S5. The relative contents of different N-sites derived from high-resolution XPS scans of N1s.

Samples	Pyridinic N	Metal-N	Pyrrolic N	Graphitic N	Oxidized N
	(atom %)	(atom %)	(atom %)	(atom %)	(atom %)
ZnN _x -PNC	32.67	9.39	25.62	19.25	13.06
Fe ₃ O ₄ /ZnN _x -PHNC	30.05	17.37	26.42	18.22	7.94
CuNCs/ZnN _x -PNC	39.07	17.85	21.08	13.94	8.06
Fe3O4/CuNCs/ZnNx-PHNC	22.63	22.83	24.73	19.60	10.21

Samples	Metal-O	O2 ²⁻ /O ⁻	C-C=0	H ₂ O
	(atom %)	(atom %)	(atom %)	(atom %)
ZnN _x -PNC	10.47	21.63	31.33	36.57
Fe ₃ O ₄ /ZnN _x -PHNC	15.64	27.90	32.31	24.15
CuNCs/ZnN _x -PNC	7.98	28.08	26.02	37.92
Fe3O4/CuNCs/ZnNx-PHNC	20.71	33.75	22.90	22.64

Table S6. The relative contents of different O-sites derived from high-resolution XPS scans of O1s.

Samples	$E_{1/2}$ (V vs. RHE)	Tafel Slope (mV/dec)	Reference
Fe ₃ O ₄ /CuNCs/ZnN _x -PHNC	0.832	54	This work
Fe-N/C-800	0.809	-	2
LD-Fe SAC	0.81	74	3
Fe-N-C SA/HCF	0.802	-	4
Fe–N–C/FeN	0.81	80	5
FeCo-1/NSC	0.82	69.75	6
NiFe@N-CFs	0.82	58	7
Co _{0.5} Fe _{0.5} S @N-MC	0.81	67	8
Ni-N4/GHSs/Fe-N4	0.83	55	9
Fe ₃ C-FeSA@3DCN	0.813	55	10
FeS ₂ -CoS ₂ /NCFs	0.81	55	11

Table S7. Comparison of the ORR catalytic performance of Fe3O4/CuNCs/ZnNx-PHNC with recently reported materials.

Fe/SNCFs-NH ₃	0.89	70.82	12
Fe ₁ Co ₁ -CNF	0.87	88	13
FeNi@NCNT-CP	0.85	79	14
Fe,Ni-SAs/DNSC	0.88	-	15
Fe_{20} (a) N/HCSs	0.850	58.7	16
N-CNSP	0.85	58	17
A-SAC(Fe,Ni,Zn)/NC	0.88	67	18
Ni ₆₆ Fe ₃₄ -NC	0.85	107	19
ZOMC	_	65.7	20

Samples	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	$C_{dl}(10^{-4}\Omega)$
Fe ₃ O ₄ /CuNCs/ZnN _x -PHNC	2.06	52.74	2.1
Fe ₃ O ₄ /ZnN _x -PHNC	2.18	40.23	1.6
CuNCs/ZnNx-PNC	4.81	46.04	4.4
ZnN_x -PNC	5.13	53.56	6.9

Table S8. Impedance spectra fitting results for the ORR of Fe₃O₄/CuNCs/ZnN_x-PHNC, Fe₃O₄/ZnN_x-PHNC, CuNCs/ZnN_x-PNC and ZnN_x-PNC,

 Table S9. Performance comparison of advanced ZABs.

Catalyst	OCV(V)	Specific capacity (mAh g ⁻¹ zn)	Power density (mW cm ⁻²)	Stability	Reference
Fe3O4/CuNCs/ZnNx-PHNC	1.45	818	162	500h@5 mA cm ⁻²	This work
NiFe@N-CFs	1.40	729	102	10h@10 mA cm ⁻²	7
FeS2-CoS2/NCFs	1.46	814	257	250h@10 mA cm ⁻²	11
FeCo-N-C-700	1.39	518	150	40h@5mA cm ⁻²	21
NiFe-NC	1.44	765.5	140.1	334h@20mA cm ⁻²	19
Fe3C-FeN/NC-2	1.41	745	166	88h@10 mA cm ⁻²	22
FeCo-NSC	1.51	782.1	152.8	120h@20 mA cm ⁻²	23
FeCu SACs/NC	1.48	741.9	153	280 cycles@5mA cm ⁻ 2	24

Fe-N/S-HPC	1.443	688	188.4	240h@10mA cm ⁻²	25
Fe-N/S-CNT-GR	-	912	123	300h@10mA cm ⁻²	26
NSC/C09S8-200	1.47	741.8	176	120h@20mA cm ⁻²	27

Reference:

1. Nandan, R.; Nanda, K. K., A unique approach in designing resilient bi-functional nanoelectrocatalysts based on ultrafine bimetallic nanoparticles dispersed in carbon nanospheres. *Journal of Materials Chemistry A* **2017**, *5* (21).

2. Lin, L.; Zhu, Q.; Xu, A.-W., Noble-Metal-Free Fe–N/C Catalyst for Highly Efficient Oxygen Reduction Reaction under Both Alkaline and Acidic Conditions. *Journal of the American Chemical Society* **2014**, *136* (31), 11027-11033.

3. Yang, J.; Wang, Z.; Huang, C.-X.; Zhang, Y.; Zhang, Q.; Chen, C.; Du, J.; Zhou, X.; Zhang, Y.; Zhou, H.; Wang, L.; Zheng, X.; Gu, L.; Yang, L.-M.; Wu, Y., Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction. *Angewandte Chemie International Edition* **2021**, *60* (42), 22722-22728.

4. Lei, J.; Liu, H.; Yin, D.; Zhou, L.; Liu, J.-A.; Chen, Q.; Cui, X.; He, R.; Duan, T.; Zhu, W., Boosting the Loading of Metal Single Atoms via a Bioconcentration Strategy. *Small* **2020**, *16* (10), 1905920.

5. Luo, X.; Wei, X.; Wang, H.; Gu, W.; Kaneko, T.; Yoshida, Y.; Zhao, X.; Zhu, C., Secondary-Atom-Doping Enables Robust Fe–N–C Single-Atom Catalysts with Enhanced Oxygen Reduction Reaction. *Nano-Micro Letters* **2020**, *12* (1), 163.

6. Chang, S.; Zhang, H.; Zhang, Z., FeCo alloy/N, S dual-doped carbon composite as a highperformance bifunctional catalyst in an advanced rechargeable zinc-air battery. *Journal of Energy Chemistry* **2021**, *56*, 64-71.

7. Niu, Y.; Teng, X.; Gong, S.; Chen, Z., A bimetallic alloy anchored on biomass-derived porous Ndoped carbon fibers as a self-supporting bifunctional oxygen electrocatalyst for flexible Zn–air batteries. *Journal of Materials Chemistry A* **2020**, *8* (27), 13725-13734.

8. Shen, M.; Ruan, C.; Chen, Y.; Jiang, C.; Ai, K.; Lu, L., Covalent Entrapment of Cobalt–Iron Sulfides in N-Doped Mesoporous Carbon: Extraordinary Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Interfaces 2015, 7 (2), 1207-1218.

9. Chen, J.; Li, H.; Fan, C.; Meng, Q.; Tang, Y.; Qiu, X.; Fu, G.; Ma, T., Dual Single-Atomic Ni-N4 and Fe-N4 Sites Constructing Janus Hollow Graphene for Selective Oxygen Electrocatalysis. *Advanced Materials* **2020**, *32* (30), 2003134.

10. Yang, Q.; Liu, R.; Pan, Y.; Cao, Z.; Zuo, J.; Qiu, F.; Yu, J.; Song, H.; Ye, Z.; Zhang, S., Ultrahigh-Loaded Fe Single Atoms and Fe(3)C Nanoparticle Catalysts as Air Cathodes for High-Performance Zn-Air Batteries. *ACS Appl Mater Interfaces* **2023**, *15* (4), 5720-5731.

11. Shi, X.; He, B.; Zhao, L.; Gong, Y.; Wang, R.; Wang, H., FeS2–CoS2 incorporated into nitrogendoped carbon nanofibers to boost oxygen electrocatalysis for durable rechargeable Zn-air batteries. *Journal of Power Sources* **2021**, *482*, 228955.

12. Yang, L.; Zhang, X.; Yu, L.; Hou, J.; Zhou, Z.; Lv, R., Atomic Fe–N4/C in Flexible Carbon Fiber Membrane as Binder-Free Air Cathode for Zn–Air Batteries with Stable Cycling over 1000 h. *Advanced Materials* **2022**, *34* (5), 2105410.

13. Wang, Y.; Li, Z.; Zhang, P.; Pan, Y.; Zhang, Y.; Cai, Q.; Silva, S. R. P.; Liu, J.; Zhang, G.; Sun, X.; Yan, Z., Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries. *Nano Energy* **2021**, *87*, 106147.

14. Zheng, X.; Cao, X.; Zeng, K.; Yan, J.; Sun, Z.; Rümmeli, M. H.; Yang, R., A Self-Jet Vapor-Phase Growth of 3D FeNi@NCNT Clusters as Efficient Oxygen Electrocatalysts for Zinc-Air Batteries. *Small* **2021**, *17* (4), 2006183.

15. Zhang, X.; Li, Y.; Jiang, M.; Wei, J.; Ding, X.; Zhu, C.; He, H.; Lai, H.; Shi, J., Engineering the coordination environment in atomic Fe/Ni dual-sites for efficient oxygen electrocatalysis in Zn-air and Mg-air batteries. *Chemical Engineering Journal* **2021**, *426*, 130758.

16. Wang, B.; Ye, Y.; Xu, L.; Quan, Y.; Wei, W.; Zhu, W.; Li, H.; Xia, J., Space-Confined Yolk-Shell Construction of Fe3O4 Nanoparticles Inside N-Doped Hollow Mesoporous Carbon Spheres as Bifunctional Electrocatalysts for Long-Term Rechargeable Zinc–Air Batteries. *Advanced Functional* *Materials* **2020**, *30* (51), 2005834.

17. Zong, L.; Wu, W.; Liu, S.; Yin, H.; Chen, Y.; Liu, C.; Fan, K.; Zhao, X.; Chen, X.; Wang, F.; Yang, Y.; Wang, L.; Feng, S., Metal-free, active nitrogen-enriched, efficient bifunctional oxygen electrocatalyst for ultrastable zinc-air batteries. *Energy Storage Materials* **2020**, *27*, 514-521.

18. Tsai, J.-E.; Hong, W.-X.; Pourzolfaghar, H.; Wang, W.-H.; Li, Y.-Y., A Fe-Ni-Zn triple singleatom catalyst for efficient oxygen reduction and oxygen evolution reaction in rechargeable Zn-air batteries. *Chemical Engineering Journal* **2023**, *460*, 141868.

19. Ma, M.; Kumar, A.; Wang, D.; Wang, Y.; Jia, Y.; Zhang, Y.; Zhang, G.; Yan, Z.; Sun, X., Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. *Applied Catalysis B: Environmental* **2020**, *274*, 119091.

20. Douka, A. I.; Xu, Y.; Yang, H.; Zaman, S.; Yan, Y.; Liu, H.; Salam, M. A.; Xia, B. Y., A Zeolitic-Imidazole Frameworks-Derived Interconnected Macroporous Carbon Matrix for Efficient Oxygen Electrocatalysis in Rechargeable Zinc–Air Batteries. *Advanced Materials* **2020**, *32* (28), 2002170.

21. Duan, X.; Ren, S.; Pan, N.; Zhang, M.; Zheng, H., MOF-derived Fe,Co@N–C bifunctional oxygen electrocatalysts for Zn–air batteries. *Journal of Materials Chemistry A* **2020**, *8* (18), 9355-9363.

22. Zhou, F.; Yu‡, P.; Sun, F.; Zhang, G.; Liu, X.; Wang, L., The cooperation of Fe₃C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries. *Journal of Materials Chemistry A* **2021**, *9* (11), 6831-6840.

23. Wu, Y.; Ye, C.; Yu, L.; Liu, Y.; Huang, J.; Bi, J.; Xue, L.; Sun, J.; Yang, J.; Zhang, W.; Wang, X.; Xiong, P.; Zhu, J., Soft template-directed interlayer confinement synthesis of a Fe-Co dual singleatom catalyst for Zn-air batteries. *Energy Storage Materials* **2022**, *45*, 805-813.

24. Liu, H.; Jiang, L.; Wang, Y.; Wang, X.; Khan, J.; Zhu, Y.; Xiao, J.; Li, L.; Han, L., Boosting oxygen reduction with coexistence of single-atomic Fe and Cu sites decorated nitrogen-doped porous carbon. *Chemical Engineering Journal* **2023**, *452*.

25. Wang, M.; Du, X.; Zhang, M.; Su, K.; Li, Z., From S-rich polyphenylene sulfide to honeycomb-

like porous carbon with ultrahigh specific surface area as bifunctional electrocatalysts for rechargeable Zn-air batteries. *Carbon* **2022**, *198*, 264-274.

26. Noh, W. Y.; Mun, J.; Lee, Y.; Kim, E. M.; Kim, Y. K.; Kim, K. Y.; Jeong, H. Y.; Lee, J. H.; Song, H.-K.; Lee, G.; Lee, J. S., Molecularly Engineered Carbon Platform To Anchor Edge-Hosted Single-Atomic M–N/C (M = Fe, Co, Ni, Cu) Electrocatalysts of Outstanding Durability. *ACS Catalysis* **2022**, *12* (13), 7994-8006.

27. Zheng, Q.; Xiong, Y.; Tang, K.; Wu, M.; Hu, H.; Zhou, T.; Wu, Y.; Cao, Z.; Sun, J.; Yu, X.; Wu, C., Modulation of pore-size in N, S-codoped carbon/Co9S8 hybrid for a stronger O2 affinity toward rechargable zinc-air battery. *Nano Energy* **2022**, *92*.