Supporting Information

Influence of the catalyst surface chemistry on the electrochemical self-

coupling of biomass-derived benzaldehyde into hydrobenzoin

Li Gong^{1,2}, Shiling Zhao³ Jing Yu^{1,4}, Junshan Li⁵, Jordi Arbiol^{4,8}, Tanja Kallio⁶, Mariano Calcabrini⁷, Paulina R. Martínez-Alanis^{1*}, Maria Ibáñez⁷, Andreu Cabot^{1,8*}

1*. Catalonia Institute for Energy Research – IREC Sant Adrià de Besòs, Barcelona 08930, Spain E-mail: pmartinez@irec.cat,_acabot@irec.cat

2. University of Barcelona, Barcelona 08028, Spain.

3. School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.

4. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain.

5. Institute of Advanced Study, Chengdu University, Chengdu, 610106, China

6. Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Aalto, Finland.

7. IST Austria, Am Campus 1, Klosterneuburg, 3400 Austria

8. ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain

Figure S1. (a) STEM-EDS chemical composition map of different elements of Cu_2S -OAm NPs; (b) EDS linear profile of detected elements of Cu_2S -OAm NPs; (c) STEM-HAADF image of Cu_2S -OAm and element C mapping and (d) its EDS linear profile.

Figure S2. Structural and chemical characterization of Cu_2S . (a) TEM image; (b) High magnification TEM image; (c) STEM-EDS chemical composition maps of Cu_2S ; (d) STEM-EDS chemical composition map of different elements; (e) EDS linear profile of detected elements; (f) STEM-HAADF image of Cu_2S and element C mapping and (g) its EDS linear profile.

Figure S3. The XPS survey spectrum of Cu₂S and Cu₂S-OAm.

Figure S4. Stability tests using CV of (a) Cu_2S in 1 M sodium acetate-acetic acid electrolyte (pH=5.2); (b) Cu_2S in 1 M sodium acetate-acetic acid electrolyte (pH=5.2) and 20 mM BZH; (c) Cu_2S -OAm in 1 M sodium acetate-acetic acid electrolyte (pH=5.2); (d) Cu_2S -OAm in 1 M sodium acetate-acetic acid electrolyte (pH=5.2); (d) Cu_2S -OAm in 1 M sodium acetate-acetic acid electrolyte (pH=5.2) and 20 mM BZH.

Figure S5. FTIR spectrum of Cu_2S -OAm after 20 cycles CV tests in 1 M sodium acetate-acetic acid electrolyte (pH=5.2) and 20 mM BZH.

Figure S6. Stability tests of Cyclic voltammetry (CV) of (a) Cu_2S in 1 M potassium carbonatepotassium bicarbonate electrolyte (pH=9.0); (b) Cu_2S in 1 M potassium carbonate-potassium bicarbonate electrolyte (pH=9.0) and 20 mM BZH; (c) Cu_2S -OAm in 1 M potassium carbonatepotassium bicarbonate electrolyte (pH=9.0); (d) Cu_2S -OAm in 1 M potassium carbonatepotassium bicarbonate electrolyte (pH=9.0) and 20 mM BZH.

Figure S7. FTIR spectrum of Cu_2S -OAm after 20 cycles CV tests in 1 M potassium carbonatepotassium bicarbonate electrolyte (pH=9.0) and 20 mM BZH.

Figure S8. Nyquist plot of electrode material (a) Cu_2S ; (b) Cu_2S -OAm in 1 M sodium acetateacetic acid electrolyte (pH=5.2) and 20 mM BZH at different temperature; (c) Cu_2S ; (d) Cu_2S -OAm in 1 M potassium carbonate-potassium bicarbonate electrolyte (pH=9.0) and 20 mM BZH.

Table S1. S	ummary of conv	ersion of BZH at	constant voltage -	-0.8 V vs. RHE	at different pH		
on different	on different electrode materials. at temperature of 25 °C.						

	Electrode materials	BZH concentration (mM)	BZH Conv. %	HDB sel. %	BA sel. %
pH= 5.2	Cu ₂ S	20	7	62	38
	Cu ₂ S	40	12	60	40
	Cu ₂ S-OAm	20	8	88	12
	Cu ₂ S-OAm	40	15	86	14
pH= 9.0	Cu ₂ S	20	31	42	58
	Cu ₂ S	40	39	44	56
	Cu ₂ S-OAm	20	24	75	25

Cu ₂ S-OAm	40	30	77	23
-----------------------	----	----	----	----