Supporting Information for

Electrochemical and Spectroscopic Characterisation of Organic Molecules with High Positive Redox Potentials for Energy Storage in Aqueous Flow Cells

Figure S1: Koutechy-Levich analysis of (a-b) 1 mM ABTS / 1 M HClO₄ and (c) CPZ in 1 M H₂SO₄

Intercepts in Figure S1 are all $<0.1 \text{ mA}^{-1} \text{ cm}^2$, hence a minimum kinetic current density of 10 mA cm⁻².

	E₀ vs SHE /V	Supporting Electrolyte	z	с / М	E _v / Wh dm ⁻³	<i>k</i> ∕ cm s ^{.1}	D /10 ⁻⁶ cm ² s ⁻¹	(D/D(Fe ²⁺)) ^{2/3}	k _m /10 ⁻⁴ cm s ⁻¹	k _{composite} / 10 ⁻⁴ cm S ⁻¹	<i>Р</i> / W ст ⁻²	Ref.
4,4'-BPTS	0.92	$1 \text{ M H}_2\text{SO}_4$	2	1.1	54.25	1.12E-04	1.84	0.4246	5.96	0.943	0.0184	1
BQDS	0.85	$1 \text{ M H}_2 \text{SO}_4$	2	0.65	29.62	1.55E-04	3.80	0.6886	9.66	1.336	0.0351	2
DHBS	0.71	$1 \text{ M H}_2 \text{SO}_4$	2	0.8	30.45	5.52E-04	4.28	0.7454	10.5	3.613	0.0396	3
DHDMBS	0.82	$1 \text{ M H}_2 \text{SO}_4$	2	2	87.91	1.30E-04	4.12	0.7267	10.2	1.153	0.0365	4
$Fe_2(SO_4)_3$	0.77	[Fe ₂ (SO ₄) ₃]	1	1.4	28.89	1.60E-03	3.76	0.6838	9.59	5.997	0.0624	5
FeCl ₃	0.77	[FeCl3]	1	0.8	16.51	1.60E-03	6.65	1	14.0	7.475	0.0444	6, 7
VO ²⁺ /VO ₂ ⁺	1.00	$1 \text{ M H}_2 \text{SO}_4$	1	1	26.80	6.80E-05	2.80	0.5618	7.88	0.626E	0.00604	8
MB (1 M)	0.52	$1 \text{ M H}_2 \text{SO}_4$	2	1	27.87	8.65E-03	2.69	0.5473	7.68	7.052	0.0708	9
MB	0.52	$1 \text{ M H}_2 \text{SO}_4$	2	1.2	33.45	8.65E-03	2.69	0.5473	7.68	7.052	0.0849	9
ABTS'	0.78	1 M HClO ₄	1	1	20.91		3.34	0.6314	8.86	8.859	0.0667	
ABTS''	1.08	1 M HClO ₄	1	1	28.95		3.29	0.6249	8.77	8.767	0.0914	
CPZ	0.802	$1 \text{ M H}_2 \text{SO}_4$	1	1	21.49		4.50	0.7709	10.8	10.82	0.0837	
ТМВ	0.829	$1 \text{ M H}_2 \text{SO}_4$	2	1	44.44	9.43E-03	4.77	0.8010	11.2	10.04	0.1606	
NHPI	1.34	$1 \text{ M H}_2 \text{SO}_4$	1	1	35.91	1.96E-02	6.67	1.0024	14.1	13.12	0.1697	
VIO	1.158	$1 \text{ M H}_2 \text{SO}_4$	1	1	31.04	2.83E-02	5.75	0.9073	12.7	12.18	0.1361	

Table S1: Experimentally determined electrochemical parameters and hypothetical figures of merit for FB positive electrolyte.

Figure S2: (a) Photograph of RFC experimental setup and (b) closer view of the in-operando UV-Vis flow-through cuvette in the photospectrometer (lid closed when running).

Figure S3: Waterfall plots of UV-Vis absorption spectra (1 scan min⁻¹) during charging process of 5 mM ABTS in (a) 1 M $HClO_4$ and (b) 6 M H_2SO_4

Figure S4: 100 mL electrolyte samples of ABTS in 1 M HClO4 (left) and 6 M H₂SO₄ (right). The 6 M H₂SO₄ sample shows a dark blue precipitate.

Figure S5: Waterfall plot of UV-Vis absorption spectra (1 scan min⁻¹) during charging process of 5 mM CPZ

Figure S6: (a) E vs C cycle profiles of 5 mM TMB in 1 M H_2SO_4 at SoC 1 with a 5 min opencircuit potential (OCP) and in 6 M H_2SO_4 at SoC 1 with a 72 h OCP and (b) magnitude of absorbance at both 249 and 425 nm during a 72 h OCP at SoC 1 during a cycle of 5 mM TMB in 6 M H_2SO_4 .

The solubility of ABTS in 1 M $HClO_4$ was not determined due to the requirement to saturate a relatively strong perchlorate solution with a dehydrating agent. The saturation point of CPZ was not obvious by the presence of undissolved solid, but formed a gel-like liquid, with a CPZ concentration that appeared to plateau with increasing solid added.

Figure S7: Absorbance in 1 M H₂SO₄ vs concentration for (a) CPZ, (b) TMB, (c) NHPI and (d) VIO.

Table S2: Calculation of the concentration and volumetric energy density of saturated solutions

x	S.E.	Abs	Dilution Factor	ε / M ⁻¹ cm ⁻¹	Max. Apparent Concentration / M	n	E / V	E(V) / Wh L ⁻¹	λ /nm
CPZ	$1 \text{ M H}_2\text{SO}_4$	0.815	40000	37910	0.860	1	0.80	18.437	240
тмв	$1 \text{ M H}_2\text{SO}_4$	0.905	20000	21920	0.825	2	0.83	36.719	249
	$6 \text{ M H}_2\text{SO}_4$	0.373	100000	21920	1.702	2	0.83	75.730	
NHPI	$1 \text{ M H}_2\text{SO}_4$	0.855	20	2238	0.008	1	1.34	0.274	300
VIO	$1 \text{ M H}_2\text{SO}_4$	0.250	2000	15300	0.033	1	1.16	1.016	249

- 1. A. W. Lantz, S. A. Shavalier, W. Schroeder and P. G. Rasmussen, *ACS Applied Energy Materials*, 2019, **2**, 7893-7902.
- B. Yang, L. Hoober-Burkhardt, S. Krishnamoorthy, A. Murali, G. K. S. Prakash and S. R. Narayanan, *Journal of The Electrochemical Society*, 2016, 163, A1442-A1449.
- 3. Y. Xu, Y. Wen, J. Cheng, Y. Yanga, Z. Xie and G. Cao, *WNWEC* 2009 - 2009 World Non-Grid-Connected Wind Power and Energy Conference, 2009, 475-478.
- 4. L. Hoober-Burkhardt, S. Krishnamoorthy, B. Yang, A. Murali, A. Nirmalchandar, G. K. S. Prakash and S. R. Narayanan, *Journal of The Electrochemical Society*, 2017, **164**, A600-A607.
- 5. Z.-c. Wu, Y. Awakura, S. Ando and H. Majima, *Materials Transactions, JIM*, 1990, **31**, 1065-1071.
- 6. M. C. Tucker, V. Srinivasan, P. N. Ross and A. Z. Weber, *Journal* of Applied Electrochemistry, 2013, **43**, 637-644.
- 7. X. You, Q. Ye and P. Cheng, *Journal of The Electrochemical Society*, 2017, **164**, E3386-E3394.
- 8. T. Yamamura, N. Watanabe, T. Yano and Y. Shiokawa, *Journal* of The Electrochemical Society, 2005, **152**, A830.
- C. G. Cannon, P. A. A. Klusener, L. F. Petit, T. Wong, A. Wang, Q. Song, N. P. Brandon and A. R. J. Kucernak, ACS Applied Energy Materials, 2024, 7, 2080-2087.