Electronic Supplementary Information

Rational designing of NiMoO4/carbon nanocomposites for high-performance supercapacitors: an *in situ* **carbon incorporation approach**

Raji Yuvaraja,^a Sankar Sarathkumar,^a Venkatesan Gowsalya,^a Sorna Pandian Anitha Juliet,^a Selvakumar Veeralakshmi,^b Siva Kalaiselvam,^b Gunniya Hariyanandam Gunasekar,^{c,d} and Selvan Nehru*^a

^aDepartment of Physical Chemistry, University of Madras, Guindy Campus, Chennai - 600025, Tamil Nadu, India.

^bCentre for Industrial Safety, Anna University, Chennai - 600025, Tamil Nadu, India.

^cDepartment of Catalysis and Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.

^dCSIR-Academy of Scientific and Innovative Research (CSIR-AcSIR), Ghaziabad-201002, India. *Corresponding author's e-mail: nehruchem@gmail.com

1. The calculation for the compositions of NiMoO⁴ and carbon components in NiMoO4/C (D50) nanocomposite using TGA curves:

At 600 °C:

Assume, the proportion of NiMoO₄ and carbon components in the nanocomposite as 'a' and 'b', respectively.

a + b = 1
\nx% x a + y% x b = composite % x 1
\n
$$
\begin{cases}\n97.4 & 0.9 \\
(10)^{x} 0 & (10)^{x} 0 \\
100 & (10)^{x} 0\n\end{cases}
$$
\n(1)
\n
$$
\begin{cases}\n97.4 & 0.9 \\
(10)^{x} 0 & (10)^{x} 0\n\end{cases}
$$
\n(2)
\nEquation (2) is divided by 0.009
\n
$$
\begin{cases}\n0.974a & 0.009b \\
0.974a & 0.009b \\
0.009 + 0.009 & 0.695\n\end{cases}
$$
\n(3)
\n108.222 a + b = 77.22
\nSubtract equation (1) from equation (3), and simplify
\n107.222a + 0 = 76.2
\n76.22
\na = 0.711
\na = 71.1% of NiMoO₄ and b = 28.9% of carbon components.

Therefore, 71.1% of NiMoO⁴ and 28.9% of carbon components are calculated to be in NiMoO4/C (D50) nanocomposite.

Fig. S1 EDAX analysis of elements present in the samples: (a) NiMoO4, (b) CNS and (c) NiMoO4/C (D50).

different scan rates $(10-100 \text{ mV s}^{-1})$.

Fig. S3 GCD curves at different current densities $(1-15 \text{ A g}^{-1})$: (a) NiMoO₄/C (D10), (b) $NiMoO₄/C (D25)$ and (c) $NiMoO₄/C (D75)$.

	S. No. Electrode Materials	Specific capacitance (F g^{-1})
	NiMoO ₄	520
2	CNS	75
3	$NiMoO4/C$ (D10)	436
4	$NiMoO4/C$ (D25)	583
5	$NiMoO4/C$ (D50)	940
6	$NiMoO4/C$ (D75)	508

Table S1. Three electrode specific capacitance of NiMoO4, CNS and NiMoO4/C based nanocomposites at current density of 1 A g^{-1} using 3 M KOH as electrolyte.

Table: S2 Electrical parameters of NiMoO₄, CNS, and NiMoO₄/C (D50) electrode materials estimated using ZSimpWin circuit fitting software for EIS experimental data.

Electrode R_s		R_{pore} R_{CT}		$\mathbf{Q}_{\mathbf{c}}$	$\mathbf n$	Q_{dl}	n	W	χ^2
materials	$(\Omega$.cm ²)		$(m\Omega. (Q.cm^2))$	$(S.cm^{-2})$.		$(S.cm^{-2})$.		$(S.cm^{-2} \text{.} s^{0.5})$	
		cm^2)		S^{n}		S^{n}			
NiMoO ₄	1.15	0.95	13.02	0.0032		0.78 0.0229	0.32	4.091×10^{-12}	0.0032
CNS	1.07		57.7 5.58×10^{-5}	0.0012		0.70 0.0005	0.90	1.034×10^{-4}	0.0007
NiMoO ₄ /	1.16	5.48	2.96	0.0024		0.82 0.0236		0.34 6.465×10 ⁻¹²	0.0033
C(D50)									

 R_s - solution resistance, R_{pore} - coating pore resistance, R_{ct} - charge transfer resistance, CPE constant phase element, n - exponent of CPE, W -Warburg impedance and χ^2 - chi-square value.

Table S3 Comparison of the present work with previously reported NiMoO₄-based nanomaterials.

References

- 1. J. Yuan, D. Yao, L. Jiang, Y. Tao, J. Che, G. He and H. Chen, *ACS Appl. Energy Mater.*, 2020, **3**, 1794- 1803.
- 2. S. Hussain, M. S. Javed, S. Asim, A. Shaheen, A. J. Khan, Y. Abbas, N. Ullah, A. Iqbal, M. Wang, G. Qiao and S. Yun, *Ceram. Int.*, 2020, **46**, 6406-6412.
- 3. E. Murugan, S. Govindaraju and S. Santhoshkumar, *Electrochim. Acta*, 2021, **392**, 138973.
- 4. C. Wei, Y. Huang, J. Yan, X. Chen and X. Zhang, *Ceram. Int.*, 2016, **42**, 15694-15700.
- 5. B. Tong, W. Wei, X. Chen, J. Wang, W. Ye, S. Cui, W. Chen and L. Mi, *CrystEngComm*, 2019, **21**, 5492-5499.
- 6. S.-W. Zhang, B.-S. Yin, C. Liu, Z.-B. Wang and D.-M. Gu, *Appl. Surf. Sci.*, 2018, **458**, 478-488.
- 7. X. Xu, Q. Liu, T. Wei, Y. Zhao and X. Zhang, *J. Mater. Sci.: Mater. Electron.*, 2019, **30**, 5109-5119.
- 8. D. Muthu, S. Vargheese, Y. Haldorai and R. T. Rajendra Kumar, *Mater. Sci. Semicond. Process.*, 2021, **135**, 106078.
- 9. V. S. Budhiraju, R. Kumar, A. Sharma and S. Sivakumar, *Electrochim. Acta*, 2017, **238**, 337-348.
- 10 M. Li, M. Du, Y. Zou, F. Yang and W. Dong, *J. Energy Storage*, 2024, **97**, 112791.
- 11 M. Beemarao, P. Kanagambal, K. Ravichandran, P. Rajeswaran, I. M. Ashraf, U. Chalapathi and S.-H. Park, *Inorg. Chem. Commun.*, 2023, **153**, 110853.
- 12 B. Ren, X. Zhang, H. An, S. Ding, H. Zhang, X. Zeng, X. e. Wang, M. Fan and X. Yang, *J. Energy Storage*, 2023, **59**, 106553.
- 13 L. Chang, S. Chen, Y. Fei, D. J. Stacchiola and Y. H. Hu, *Proc. Natl. Acad. Sci.*, 2023, **120**, e2219950120.