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Table S1: Comparison of the Electrocatalytic Oxygen Evolution Reaction (OER) Activity of the Present System (Ag-CL/NiP) 
with Ni and Carbon-Based Catalysts Reported Recently 

SI. No. Name of the catalyst 

OER over 

potential at 

10 mA cm-2 

Ref 

 Ag-C/Ni-P 150mV 
Current 

Work 

1. Fe dopedNi3Fe/NiFe2O4/CNT 250mV [1] 

2. Ni3Fe/NiFe2O4@N-GT 230mV [2] 

3. NiO-NiFe2O4/rGO 296mV [3] 

4. Fe2O3/NiFe2O4@CNFs 350mV [4] 

5. Ni-NiFe2O4@C 212mV [5] 

6. NiFe-LDH@CNT 269mV [6] 

7. N doped Graphene/NiFe2O4 340mV [7] 

8. NiFe2O4/Ketjenblack Carbon 258mV [8] 

9. NixFe-S/NiFe2O4/3DCarbon 248mV [9] 

10. Te-NiFe2O4@Carbon/NF 220mV [10] 

 

Table S2: Comparison of Photocatalytic Hydrogen Evolution Performance of the Present System (Ag-CL/NiP) with Recently 
Reported Catalysts 

Sl. 

No. 
Name of catalyst 

Hydrogen evolution 

rate 
Photo current Ref 

 Ag-C/Ni-P 4.37 mmolcm-²h−1 9.42 mA cm-² Current work 

1 CuxO/TiO2 7.06 mmolh−1g−1. 3.641 μA cm-2 [11] 

2 Ni2P/NiS@PCOS 150.7 μmolh−1 155 μA cm−2 [12] 

3 Et-GaAs/TiO2/Ni-P - 25 mA cm−2 [13] 

4 CdS@Ni3S2 178.1 μmolcm-2h-1 10.8 mA cm-2 [14] 
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5 WO3/CuO - 3.2 mA cm-2 [15] 

6 C-BiVO4/CQDs 
50 μmolh−1 

 
4.83 mA cm−2 [16] 

7 BaTiO3 6.72 μmolcm-2h-1 0.17 mA cm−2 [17] 

8 (Co-Ci/NiFeOOH/BiVO4 56.66 μmolh-1 4.1 mA cm−2 [18] 

9 Ti-Fe2O3/In2O3 - 2 mA cm−2 [19] 

10 Co-Pi/CQDs/Fe2O3/TiO2 - 3.0 mA cm−2 [20] 

 

1. Physico - chemical characterization 

 

Figure S1: SEM images of (a – c) Ag-CL powder at different magnifications and EDAX mapping of (d- h) Ag-CL powder 

 

 

Figure S2: EDAX spectra of NiP panel 

 



 

Figure S3: FE-SEM images of (a – c) Ag-CC/NiP at different magnifications and EDAX mapping of (d- h) Ag-CC/NiP panel 

  



2. Electrocatalytic Oxygen Evolution Reaction (OER) Analysis 

 

Figure S4: CV analysis of different electrodes at 10 mV/s scan rate in 1M NaOH electrolyte 

 

Figure S5: Stability analysis by 1000 cycles of CV at 10 mV/s scan rate in 1M NaOH electrolyte 



 

Figure S6: LSV curve before and after 1000 cycles of CV at 10 mV/s scan rate in 1M NaOH electrolyte 

Figure S7: LSV curves at 10 mV/s scan rate in 1M NaOH electrolyte, evidenced initiation of electrocatalytic OER before 1.4 V 
vs RHE  

  



3. Photocatalytic Water Splitting Analysis 

Figure S8:Variation in the hydrogen evolution performance with temperature fluctuations over time during photocatalytic 
water splitting of Ag-CL/NiP. 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Reusability and stability 

 

Figure S9 XRD pattern of Ag-CL/NiP before and after 5 cycles of photocatalytic water splitting 

 

Figure S10 FESEM images of Ag-CL/NiP before and after 5 cycles of photocatalytic water splitting 

 



Apparent Quantum Yield  

The apparent quantum yield (AQY) of Ag-CL/NiP catalysts was calculated by using the following 

equation SE1 given below, 

AQY (%) = (2 X no. of H2 molecules)/(Number of incident photons) x 100 …………………………………SE121 

Under the assumption that field effect and multiple excitation has no contribution to H2 generation.             

For 9% photons from the wavelength range 370–500 nm are incident the no. of photons absorbed = 

8.084 x 1018 s-1cm-2 

 

AQY (%) = (2 x no. of H2 molecules)/(Number of incident photons) x 100 

  = 1.8 x 10-2 % 

The apparent quantum yield (AQY) of Ag-CL/NiP catalysts used for photocatalysis at ~12 oC  

  = 1.04 x 10-2 % 
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