Ag-NiP Deposited Green Carbon Channels Embedded NiP Panels for Sustainable Water Splitting

Revathy B. Nair^a, A. Anantha Krishnan^b, Aneesh Kumar M. A.^b, Sivaraj Rajendran.^b, Sreehari Harikumar^b, Vidhya C.^c M. Ameen Sha^c, Thomas Mathew^b Sajith Kurian^a*, P. S. Arun^b*

SI. No.	Name of the catalyst	OER over potential at	Ref
		10 mA cm ⁻²	
	Ag-C/Ni-P	150mV	Current Work
1.	Fe dopedNi ₃ Fe/NiFe ₂ O ₄ /CNT	250mV	[1]
2.	Ni ₃ Fe/NiFe ₂ O ₄ @N-GT	230mV	[2]
3.	NiO-NiFe2O4/rGO	296mV	[3]
4.	Fe ₂ O ₃ /NiFe ₂ O ₄ @CNFs	350mV	[4]
5.	Ni-NiFe ₂ O ₄ @C	212mV	[5]
6.	NiFe-LDH@CNT	269mV	[6]
7.	N doped Graphene/NiFe ₂ O ₄	340mV	[7]
8.	NiFe ₂ O ₄ /Ketjenblack Carbon	258mV	[8]
9.	Ni _x Fe-S/NiFe ₂ O ₄ /3DCarbon	248mV	[9]
10.	Te-NiFe ₂ O ₄ @Carbon/NF	220mV	[10]

Table S1: Comparison of the Electrocatalytic Oxygen Evolution Reaction (OER) Activity of the Present System (Ag-CL/NiP) with Ni and Carbon-Based Catalysts Reported Recently

Table S2: Comparison of Photocatalytic Hydrogen Evolution Performance of the Present System (Ag-CL/NiP) with Recently Reported Catalysts

SI. No.	Name of catalyst	Hydrogen evolution rate	Photo current	Ref
	Ag-C/Ni-P	4.37 mmolcm ⁻² h ⁻¹	9.42 mA cm ⁻²	Current work
1	Cu _x O/TiO ₂	$7.06 \text{ mmolh}^{-1}\text{g}^{-1}$.	3.641 μA cm ⁻²	[11]
2	Ni ₂ P/NiS@PCOS	150.7 μmolh ⁻¹	155 μA cm ⁻²	[12]
3	Et-GaAs/TiO₂/Ni-P	-	25 mA cm ⁻²	[13]
4	CdS@Ni ₃ S ₂	178.1 µmolcm ⁻² h ⁻¹	10.8 mA cm ⁻²	[14]

5	WO ₃ /CuO	-	3.2 mA cm ⁻²	[15]
6	C-BiVO ₄ /CQDs	50 μmolh ⁻¹	4.83 mA cm ⁻²	[16]
7	BaTiO₃	6.72 μmolcm ⁻² h ⁻¹	0.17 mA cm ⁻²	[17]
8	(Co-Ci/NiFeOOH/BiVO ₄	56.66 μmolh ⁻¹	4.1 mA cm ⁻²	[18]
9	Ti-Fe ₂ O ₃ /In ₂ O ₃	-	2 mA cm ⁻²	[19]
10	Co-Pi/CQDs/Fe ₂ O ₃ /TiO ₂	-	3.0 mA cm ⁻²	[20]

1. Physico - chemical characterization

Figure S1: SEM images of (a - c) Ag-CL powder at different magnifications and EDAX mapping of (d - h) Ag-CL powder

Figure S2: EDAX spectra of NiP panel

Figure S3: FE-SEM images of (a – c) Ag-CC/NiP at different magnifications and EDAX mapping of (d- h) Ag-CC/NiP panel

2. Electrocatalytic Oxygen Evolution Reaction (OER) Analysis

Figure S4: CV analysis of different electrodes at 10 mV/s scan rate in 1M NaOH electrolyte

Figure S5: Stability analysis by 1000 cycles of CV at 10 mV/s scan rate in 1M NaOH electrolyte

Figure S6: LSV curve before and after 1000 cycles of CV at 10 mV/s scan rate in 1M NaOH electrolyte

Figure S7: LSV curves at 10 mV/s scan rate in 1M NaOH electrolyte, evidenced initiation of electrocatalytic OER before 1.4 V vs RHE

3. Photocatalytic Water Splitting Analysis

Figure S8:Variation in the hydrogen evolution performance with temperature fluctuations over time during photocatalytic water splitting of Ag-CL/NiP.

4. Reusability and stability

Figure S9 XRD pattern of Ag-CL/NiP before and after 5 cycles of photocatalytic water splitting

Figure S10 FESEM images of Ag-CL/NiP before and after 5 cycles of photocatalytic water splitting

Apparent Quantum Yield

The apparent quantum yield (AQY) of Ag-CL/NiP catalysts was calculated by using the following equation SE1 given below,

AQY (%) = (2 X no. of H₂ molecules)/(Number of incident photons) x 100SE1²¹

Under the assumption that field effect and multiple excitation has no contribution to H₂ generation.

For 9% photons from the wavelength range 370–500 nm are incident the no. of photons absorbed = $8.084 \times 10^{18} \text{ s}^{-1} \text{ cm}^{-2}$

AQY (%) = $(2 \times no. \text{ of } H_2 \text{ molecules})/(\text{Number of incident photons}) \times 100$

= 1.8 x 10⁻² %

The apparent quantum yield (AQY) of Ag-CL/NiP catalysts used for photocatalysis at ~12 °C

 $= 1.04 \times 10^{-2} \%$

References

- 1 K. Srinivas, Y. Chen, B. Wang, B. Yu, Y. Lu, Z. Su, W. Zhang and D. Yang, ACS Appl. Mater. Interfaces, 2020, **12**, 55782–55794.
- 2 J. Zou, G. Song, A. Cui and Z. Li, *Diam. Relat. Mater.*, 2024, **144**, 110999.
- 3 G. Zhang, Y. Li, Y. Zhou and F. Yang, *ChemElectroChem*, 2016, **3**, 1927–1936.
- 4 X. Meng, J. Xie, Y. Sun, J. Liu, B. Liu, R. Wang, F. Ma, M. Liu and J. Zou, *Int. J. Hydrogen Energy*, 2022, **47**, 21329–21343.
- 5 J. Zhang, Y. Jiang, Y. Wang, C. Yu, J. Cui, J. Wu, X. Shu, Y. Qin, J. Sun, J. Yan, H. Zheng, Y. Zhang and Y. Wu, *Electrochim. Acta*, 2019, **321**, 134652.
- 6 M. Shahid, *Mater. Sci. Eng. B*, 2024, **300**, 117143.
- 7 D. Navadeepthy, A. Rebekah, C. Viswanthan and N. Ponpandian, *Int. J. Hydrogen Energy*, 2021, **46**, 21512–21524.
- 8 C. Liu, X. Chen, X. Zhang, J. Li, B. Wang, Z. Luo, J. Li, D. Qian, J. Liu and G. I. N. Waterhouse, *J. Phys. Chem. Lett.*, 2023, **14**, 6099–6109.
- 9 W. Yan, J. Zhang, A. Lü, S. Lu, Y. Zhong and M. Wang, *Int. J. Miner. Metall. Mater.*, 2022, **29**, 1120–1131.
- 10 Y. Li, H. Guo, J. Zhao, Y. Zhang, L. Zhao and R. Song, *Chem. Eng. J.*, 2023, **464**, 142604.
- 11 S. Rajendran, S. S. Mani, T. R. Nivedhitha, A. K. Asoka, P. S. Arun, T. Mathew and C. S. Gopinath, *ACS Appl. Energy Mater.*, 2024, **7**, 104–116.
- 12 X. Yan, M. Xia, H. Liu, B. Zhang, C. Chang, L. Wang and G. Yang, *Nat. Commun.* 2023 141, 2023, 14, 1–11.

- 13 M. Arunachalam, R. S. Kanase, K. Zhu and S. H. Kang, *Nat. Commun.* 2023 141, 2023, **14**, 1–11.
- 14 S. Yang, H. Guan, Y. Zhong, J. Quan, N. Luo, Q. Gao, Y. Xu, F. Peng, S. Zhang and Y. Fang, *Chem. Eng. J.*, 2021, **405**, 126231.
- 15 M. Sun, R. T. Gao, J. He, X. Liu, T. Nakajima, X. Zhang and L. Wang, *Angew. Chemie Int. Ed.*, 2021, **60**, 17601–17607.
- 16 Y. Wang, D. Chen, J. Zhang, M. S. Balogun, P. Wang, Y. Tong and Y. Huang, *Adv. Funct. Mater.*, 2022, **32**, 2112738.
- 17 S. Zhang, D. Chen, Z. Liu, M. Ruan and Z. Guo, *Appl. Catal. B Environ.*, 2021, **284**, 119686.
- 18 X. Hu, Y. Li, X. Wei, L. Wang, H. She, J. Huang and Q. Wang, *Adv. Powder Mater.*, 2022, **1**, 100024.
- 19 Y. Li, Q. Wu, Y. Chen, R. Zhang, C. Li, K. Zhang, M. Li, Y. Lin, D. Wang, X. Zou and T. Xie, *Appl. Catal. B Environ.*, 2021, **290**, 120058.
- 20 X. Hu, J. Huang, F. Zhao, P. Yi, B. He, Y. Wang, T. Chen, Y. Chen, Z. Li and X. Liu, *J. Mater. Chem. A*, 2020, **8**, 14915–14920.
- 21 S. S. Mani, S. Rajendran, N. Nalajala, T. Mathew and C. S. Gopinath, *Energy Technol.*, 2022, **10**, 1–12.