Reduced graphene oxide derived from the spent graphite anodes as a sulfur host in lithium-sulfur batteries

J. Priscilla Grace^a, Y. Kaliprasad^b, Surendra K. Martha^{a,*}

^aDepartment of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy,

Telangana 502284, India.

^bNile Limited, Lot No.24 A/A, MLA Colony. Road No.12, Banjara Hills, Hyderabad, India.

*Corresponding author: Email: <u>martha@chy.iith.ac.in</u> (Surendra K. Martha),

Orcid id: https://orcid.org/0000-0002-7762-7237

Fig.S1. Flow chart for the synthesis of RRGO and RRGO-S composite.

Fig.S2. (a) XRD, (b) Raman spectra, and (c-d) SEM of water-washed graphite, (e) BET adsorption-desorption curve of RRGO.

The textural properties of water-washed graphite were analyzed by SEM, XRD, and Raman spectra, as shown in Fig. S2. Fig.S2a, the XRD clearly shows a sharp (002) peak at 26.5° for a hexagonal crystal lattice of the graphite, and the Raman spectra demonstrates (Fig. S2b) a flat D band at 1360 and G band at 1575 cm⁻¹, I_D/I_G ratio of ~2 thus depicting a more disordered graphitic phase. Fig. S2c,d displays SEM of water-washed graphite having a smooth surface. Fig. S2(e) represents the BET adsorption-desorption curve of RRGO with a BET surface area of 93 m² g⁻¹.

Fig.S3. Deconvoluted peaks of Raman spectra of RRGO-S composite.

The I_D/I_G ratio was calculated by FWHM which is ${\sim}2.$

Fig.S4. High resolution F 1s spectra of RRGO-S@CF electrodes.

Figure.S5. BET surface area of (a,b) bare carbon fiber (CF) and (c,d) RRGO-S@CF electrode.

Fig.S6. EDAX images of the RRGO-S composite (a) SEM image (b) C, S, and O, (c) C, (d) O, and (e) S.

Fig.S7. TGA curves of RRGO-S composite.

Fig.S8. Energy densities and the hysteresis plot of RRGO-S@CF during1st and 100th cycles at 200 mA g⁻¹.

Fig.S9. (a,b) GCD and cycling stability plot of RRGO-S@C-Al at 500 mA g⁻¹.

Fig.S10. Cyclic stability plot of specific and volumetric discharge capacities at 800 mA g⁻¹.

The volumetric capacity has been calculated using the formula $C_v = C_g \times m/t$. C_v stands for volumetric capacity (mAh cm⁻³), C_g stands for gravimetric capacity (mAh g⁻¹), m is the active mass loading in g cm⁻², and t is the thickness of the electrode in cm. For the RRGO-S composite electrode, the active mass of the 1.13 cm² circular electrodes is 2 mg, and the coating thickness of electrodes is t = 35 x 10⁻⁴ cm.

The volumetric capacities are $\sim 30\%$ lower than gravimetric capacities.

Fig. S11. Rate capability plot at different current densities (a) recorded 10 cycles for each current density (as depicted in Fig.5. (a,b) and (b) 4.5 mg cm⁻² active material loading of sulfur.

Fig.S12. (a) OCV during storage for 100 h after a full charge and (b) comparison of GCD before and after 100 h of storage (self-discharge). 20 % loss of capacity after storage has been observed.

Table.ST1. The literature survey of RGO-S composite electrode electrochemical performances

 in terms of capacities, capacity retention, and cycle number in comparison to the present work.

Graphene-	Weight % -	Current	Initial discharge	Capacity	Refere
sulfur	Electrode area	density/ C-	capacity (mAh	retention @	nces
composite	of	rate	g ⁻¹)	cycles	
	S loading				
GWS	-	0.1 C	808 mAh g ⁻¹	93.7 % CE	1
(Graphene				@100 th cycle	
wrapped					
sulfur)					
g-C/S	80 %	0.2 C	1113	89 % @ 300 th	2
	1.2-1.5 mg cm ⁻			cycle	
	2				
G/S-G	56%	0.1 C	1036 mAh g ⁻¹	60 % @ 200 th	3
(Graphene/				cycle	
sulfur@gra					
phene)					
S@GO	92 %	0.2 C	1301 mAh g ⁻¹		4
		1 C	704 mAh g ⁻¹	86 % @ 115 th	
				cycle	
RGO@S	55%	0.1 C	1381 mAh g ⁻¹	70 % @150 th	5
		0.2 C	792 mAh g ⁻¹	cycle	
				84 % @ 300 th	
				cycle	
3D-NGS	88 %	0.4 C	792 mAh g ⁻¹	93 % @ 145 th	6
	1mg cm ⁻²			cycle	
NGS/S	80 %	1.0	1140 m A h g ⁻¹	72 % @ 500 th	7
1105/5		10	1140 min g	cycle	
NanoS@G	-	0.2 C	1400 mAh g ⁻¹	51 % @ 100 th	8
				cycle	

					C.
Leaf like	70 %				9
GO/S	2.7 mg cm ⁻²	0.5 C	600 mAh g ⁻¹	70 % @ 600 th	
				cycle	
	4 mg cm ⁻²		600 mAh g ⁻¹	60 % @ 600 th	
				cycle	
SG/S	78 %	0.2 C	1377 mAh g ⁻¹	5	10
Spent	$\sim 1 \text{ mg cm}^{-2}$	0.5 C	765 mAh g^{-1}	70 % @ 500 th	
granhite/sul				cvcle	
fur				cycle	
annosita					
	60.0/	1.0	069	65.0/ 500th	11
2-KB/	00 %		908	~ 05 % 500"	11
Spent	0./-1.2 mg			cycle	
graphite	cm ⁻²				
interlayer					
<u>Our work</u>	60 %				-
RRGO-	~ 2mg cm ⁻²	(0.03 C of	1113 mAh g ⁻¹		
RRGO- S@CF	~ 2mg cm ⁻²	(0.03 C of theoretical	1113 mAh g ⁻¹		
RRGO- S@CF (Recycled	~ 2mg cm ⁻²	(0.03 C of theoretical capacity)	1113 mAh g ⁻¹	81 % @ 150 th	
RRGO- S@CF (Recycled RGO-S	~ 2mg cm ⁻²	(0.03 C of theoretical capacity) 50 mA g ⁻¹	1113 mAh g ⁻¹ 552 mAh g ⁻¹	81 % @ 150 th cycle	
RRGO- S@CF (Recycled RGO-S composite	~ 2mg cm ⁻²	(0.03 C of theoretical capacity) 50 mA g ⁻¹	1113 mAh g ⁻¹ 552 mAh g ⁻¹	81 % @ 150 th cycle 73 % @ 400 th	
RRGO- S@CF (Recycled RGO-S composite onto 3D-	~ 2mg cm ⁻²	(0.03 C of theoretical capacity) 50 mA g ⁻¹ (C/3 of	1113 mAh g ⁻¹ 552 mAh g ⁻¹	81 % @ 150 th cycle 73 % @ 400 th cycle	
RRGO- S@CF (Recycled RGO-S composite onto 3D- carbon	$\sim 2 \text{mg cm}^{-2}$	(0.03 C of theoretical capacity) 50 mA g ⁻¹ (C/3 of theoretical	1113 mAh g ⁻¹ 552 mAh g ⁻¹ 535 mAh g ⁻¹	81 % @ 150 th cycle 73 % @ 400 th cycle 81% @ 150 th	
RRGO- S@CF (Recycled RGO-S composite onto 3D- carbon fiber)	~ 2mg cm ⁻²	(0.03 C of theoretical capacity) 50 mA g ⁻¹ (C/3 of theoretical capacity)	1113 mAh g ⁻¹ 552 mAh g ⁻¹ 535 mAh g ⁻¹	81 % @ 150 th cycle 73 % @ 400 th cycle 81% @ 150 th cycle	
RRGO- S@CF (Recycled RGO-S composite onto 3D- carbon fiber)	~ 2mg cm ⁻²	(0.03 C of theoretical capacity) 50 mA g ⁻¹ (C/3 of theoretical capacity) 500 mA g ⁻¹	1113 mAh g ⁻¹ 552 mAh g ⁻¹ 535 mAh g ⁻¹	81 % @ 150 th cycle 73 % @ 400 th cycle 81% @ 150 th cycle	
RRGO- S@CF (Recycled RGO-S composite onto 3D- carbon fiber)	~ 2mg cm ⁻² ~ 4.5 mg cm ⁻²	(0.03 C of theoretical capacity) 50 mA g ⁻¹ (C/3 of theoretical capacity) 500 mA g ⁻¹	1113 mAh g ⁻¹ 552 mAh g ⁻¹ 535 mAh g ⁻¹	81 % @ 150 th cycle 73 % @ 400 th cycle 81% @ 150 th cycle	
RRGO- S@CF (Recycled RGO-S composite onto 3D- carbon fiber)	~ 2mg cm ⁻² ~ 4.5 mg cm ⁻²	(0.03 C of theoretical capacity) 50 mA g ⁻¹ (C/3 of theoretical capacity) 500 mA g ⁻¹	1113 mAh g ⁻¹ 552 mAh g ⁻¹ 535 mAh g ⁻¹ 575 mAh g ⁻¹	81 % @ 150 th cycle 73 % @ 400 th cycle 81% @ 150 th cycle	
RRGO- S@CF (Recycled RGO-S composite onto 3D- carbon fiber)	~ 2mg cm ⁻²	(0.03 C of theoretical capacity) 50 mA g ⁻¹ (C/3 of theoretical capacity) 500 mA g ⁻¹ (C/2 of	1113 mAh g ⁻¹ 552 mAh g ⁻¹ 535 mAh g ⁻¹ 575 mAh g ⁻¹	81 % @ 150 th cycle 73 % @ 400 th cycle 81% @ 150 th cycle	
RRGO- S@CF (Recycled RGO-S composite onto 3D- carbon fiber)	~ 2mg cm ⁻²	(0.03 C of theoretical capacity) 50 mA g ⁻¹ (C/3 of theoretical capacity) 500 mA g ⁻¹ (C/2 of theoretical	1113 mAh g ⁻¹ 552 mAh g ⁻¹ 535 mAh g ⁻¹ 575 mAh g ⁻¹	81 % @ 150 th cycle 73 % @ 400 th cycle 81% @ 150 th cycle	
RRGO- S@CF (Recycled RGO-S composite onto 3D- carbon fiber)	~ 2mg cm ⁻²	(0.03 C of theoretical capacity) 50 mA g ⁻¹ (C/3 of theoretical capacity) 500 mA g ⁻¹ (C/2 of theoretical capacity)	1113 mAh g ⁻¹ 552 mAh g ⁻¹ 535 mAh g ⁻¹ 575 mAh g ⁻¹	81 % @ 150 th cycle 73 % @ 400 th cycle 81% @ 150 th cycle	
RRGO- S@CF (Recycled RGO-S composite onto 3D- carbon fiber)	~ 2mg cm ⁻²	(0.03 C of theoretical capacity) 50 mA g ⁻¹ (C/3 of theoretical capacity) 500 mA g ⁻¹ (C/2 of theoretical capacity) 800 mA g ⁻¹	1113 mAh g ⁻¹ 552 mAh g ⁻¹ 535 mAh g ⁻¹ 575 mAh g ⁻¹	81 % @ 150 th cycle 73 % @ 400 th cycle 81% @ 150 th cycle	
RRGO- S@CF (Recycled RGO-S composite onto 3D- carbon fiber)	~ 2mg cm ⁻²	(0.03 C of theoretical capacity) 50 mA g ⁻¹ (C/3 of theoretical capacity) 500 mA g ⁻¹ (C/2 of theoretical capacity) 800 mA g ⁻¹	1113 mAh g ⁻¹ 552 mAh g ⁻¹ 535 mAh g ⁻¹ 575 mAh g ⁻¹	81 % @ 150 th cycle 73 % @ 400 th cycle 81% @ 150 th cycle	

References

- 1. X. Gao, J. Li, D. Guan, and C. Yuan, ACS Appl. Mater. Interfaces, 6, 4154-4159 (2014).
- 2. M. Yu et al., *Journal of materials chemistry a*, **3**, 9609–9615 (2015).
- 3. Z. Tao, J. Xiao, Z. Yang, and H. Wang, Journal of Nanomaterials, 2019 (2019).
- 4. J. M. Chabu et al., Applied Surface Science, 493, 533–540 (2019).
- 5. Y. Liu, M. Yao, L. Zhang, and Z. Niu, Journal of Energy Chemistry, 38, 199-206 (2019).
- 6. C. Wang et al., Journal of Materials Chemistry A, 2, 5018–5023 (2014).

7. X. Wang, Z. Zhang, Y. Qu, Y. Lai, and J. Li, *Journal of Power Sources*, **256**, 361–368 (2014).

- 8. J. Zhang et al., Journal of Power Sources, 270, 1–8 (2014).
- 9. S. Yuan et al., Advanced Science, 2, 1500071 (2015).
- 10. X. Yang et al., Carbon, 199, 215–223 (2022).
- 11. Q. Xu et al., Green Chemistry, 23, 942–950 (2021).