Supporting Information

Graphite Particles Modified by ZnO Atomic Layer Deposition for Li-ion Battery Anode

Ahmad Helaley ^a, Han Yu ^b, and Xinhua Liang ^{a, *}

^a Department of Energy, Environmental and Chemical Engineering, Washington University in

St. Louis, St. Louis, MO 63130, USA

^b Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri

University of Science and Technology, Rolla, MO 65409, USA

* Corresponding author. Email: <u>xinhua.liang@wustl.edu</u>

Fig. S1. FTIR spectra of pristine graphite particles and graphite particles coated with various

number of ZnO ALD cycles.

Fig. S2. TEM images of (a) 2Zn-graphite powders, (b) 5Zn-graphite powders, and (c) 10Zn-graphite powders. The inset image shows the size distributions of ZnO nanoparticles.

Fig. S3. The first cycle of the CV profile at various scan rates for (a) UC-graphite anode (b) 2Zn-graphite anode.

Fig. S4. After normalization, the Nyquist plot of anode samples tested at a 1C rate with a potential range of 0.1 V - 3.0 V for the 10th, 100th, 200th, and 500th charge/discharge cycles for (a) UC-graphite, (b) 2Zn-graphite, (c) 5Zn-graphite, and (d) 10Zn-graphite.

Fig. S5. Coulombic efficiencies of graphite electrodes.

Fig. S6. TEM images of the (a) cycled UC-graphite electrode and (b) cycled 2Zn-graphite electrode after 500 cycles of charge/discharge.

Fig. S7. Scan survey of (a) cycled UC-graphite electrode, and (b) cycled 2Zn-graphite electrode after 100 cycles of charge/discharge.

Fig. S8. XPS spectra: (a) C1s of fresh 2Zn-graphite powders, and (b) O1s of fresh 2Zn-electrode.

Fig. S9. XPS F1s spectra of (a) cycled UC-graphite, (b) fresh 2Zn-graphite, and (c) cycled 2Zn-graphite.

Fig. S10. TEM image and EDX mapping of 2Zn-graphite electrode after 500 cycles of charge/discharge.

Table S1. Comparative analysis of rate performance for 2Zn-graphite and related graphite-based anodes reported in recent studies.

Cell system	Anode structure	Rate Performance (mAh g ⁻¹)	Electrochemical Stability Window (V)	Reference
Graphite // Li	Uncoated graphite	26@5C	0.01-1.5 V	
	2Zn-graphite	109@5C	-	This work
Graphite // Li	Bare graphite	25@4C	0.01-1.5 V	
_		10 @6C		[1]
	Aligned graphene array	75 @4C		
	+graphite	50@6C		
Graphite // Li	Bare graphite	50 @ 5C	0-1.5 V	
	Graphite coated with	100 @5C		[2]
	amorphous carbon			
Graphite // Li	Pristine graphite	90@4C	0-1.5 V	
		80@6C		[3]
	P-S-graphite	100@4C		
		90@6C		
Graphite // Li	Graphite bare	117@2C	0.01-1.2 V	
				[4]
	Graphite with heat	145@2C		
	treatment			

References:

- [1] C. Zhang, L. Dong, N. Zheng, H. Zhu, C. Wu, F. Zhao, et al., Aligned graphene array anodes with dendrite-free behavior for high-performance Li-ion batteries, *Energy Storage Materials*, vol. **37**, pp. 296-305, 2021.
- [2] Z. Ma, Y. Zhuang, Y. Deng, X. Song, X. Zuo, X. Xiao, et al., From spent graphite to amorphous sp² + sp³ carbon-coated sp² graphite for high-performance lithium ion batteries, *Journal of Power Sources*, vol. **376**, pp. 91-99, 2018.
- [3] S. Tu, B. Zhang, Y. Zhang, Z. Chen, X. Wang, R. Zhan, et al., Fast-charging capability of graphite-based lithium-ion batteries enabled by Li₃P-based crystalline solid–electrolyte interphase, *Nature Energy*, vol. **8**, pp. 1365-1374, 2023.
- [4] Y. Jin, H. Yu, and X. Liang, Simple approach: Heat treatment to improve the electrochemical performance of commonly used anode electrodes for Lithium-ion batteries, *ACS Applied Materials & Interfaces*, vol. **12**, pp. 41368-41380, 2020.