Novel Electrified Sorption Enhanced Reforming

Process for Blue Hydrogen Production

Abdelrahman Mostafa^{1*}, Alessandra Beretta¹, Gianpiero Groppi¹, Enrico Tronconi¹, Matteo C. Romano^{2*}

¹ LCCP – Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via la Masa 34, 20156, Milano, Italy.

² GECOS – Group of Energy Conversion Systems, Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, 20156, Milano, Italy.

*Corresponding authors: abdelrahmanmohamed.mostafa@polimi.it, matteo.romano@polimi.it

Section A: Modelling Methodology and Assumptions

Table A1 Modelled reactor characteristics used in the 1D reactor model ¹										
2.26	m									
5	m									
1	mm									
5/1	m^{3} _{CaO} / m^{3} _{Cat}									
1650	kg/m ³									
1650	kg/m ³									
0.4	mol _{caco3} /mol _{cao}									
0.3	-									
0.4	-									
	cteristics used in the 1D reac 2.26 5 1 5/1 1650 0.4 0.3 0.4									

- -- -- -- - 1

ASPEN Plus eSER reactor Modelling

The single eSER reactor is modelled assuming an input-output model that reproduces the timeaverage yields of all the species; these are computed by integrating the temporal flow profiles, predicted by the 1-D dynamic reactor model, of the species entering and exiting the reactor and ratioing them to the time on stream and by calculating the global heat demand for the eSER process (for the sorbent calcination and heating the reactor) by performing an enthalpy balance across the reactor. Except for the CO_2 , the specific yield of each component per mole of feed is calculated by integrating over time the outlet molar flow rate computed using the 1-D heterogenous model of from the start of feeding (time = 0) to the breakthrough time (time = BTt), Equation A1.

Integral yield of species i =
$$\frac{\int_{0}^{BTt} in^{gas out} dt}{\int_{0}^{BTt} in^{gas in} dt} \qquad i \neq CO_{2}$$
(A1)

The specific yield of CO_2 of the SER reactor (Equation A2) is calculated by the summation of the integral of the CO_2 flow rate over the breakthrough time and the amount of CO_2 trapped in the reactor as converted CaO assuming that the SER stage begins with fully regenerated sorbent.

Integral yield of
$$CO_2 = \frac{\int_{0}^{BT_t} in_{CO_2}^{gas out} dt + \int_{0}^{L} n_{CaCO_3}(BTt) dz}{\int_{0}^{BT_t} in_{total}^{gas in} dt}$$
 (A2)

As presented in **Figure A1**, the solids (catalyst, fresh sorbent, and inerts) are modelled as virtual flows with a mass flowrate calculated as the mass of the reactor stock divided by the breakthrough time and a temperature assumed equal to the regeneration temperature. The virtual solid flows are then cooled down to the average bed temperature at the breakthrough time, calculated as shown in Equation A3, and then are mixed with a CO_2 stream that has a molar flow rate equivalent to the value of converted CaO moles in the 1D reactor model. The mixture is sent to stoichiometric reactor to ensure the carbonation reaction between the CO_2 and the sorbent. The heat of reaction from the stoichiometric reactor and the heat removed from the solids and the separated CO_2 stream are sent to the eSER yield reactor to close the enthalpy balance.

$$Bed Temp = \frac{\int_{0}^{L} m_{sorb}^{(BTt)} Cp_{sorb}^{(BTt)} T_{sorb}^{(BTt)} dz + \int_{0}^{L} m_{cat} Cp_{cat} T_{cat}^{(BTt)} dz}{\int_{0}^{L} (m_{sorb}^{(BTt)} Cp_{sorb}^{(BTt)} + m_{cat} Cp_{cat}) dz}$$
(A3)

Figure A1 ASPEN eSER reactor model

Table A2 shows an example of the errors generated in the material and the enthalpy balances. Regarding the material flows, an error of 0.34% is calculated comparing the reformate stream in the Aspen model to the outlet stream of the 1D reactor model. With except to the CO2, an error of 0.30% is calculated for all the species. It is worth mentioning that even though the relative difference of the amount of uncaptured CO_2 exiting the eSER reactor in the Aspen model reaches 5%, the absolute difference in terms of molar flow rate of CO_2 is small compared to the total carbon fed to the plant making the effect on the overall performance indicator negligible.

Material Flows										
		Inlat	1-D reactor model	Aspen	Ennon					
		Imet	Outlet	Outlet	Error					
CH_4	[kmol/h]	287.58	8.60	8.62	0.30%					
C_2H_6	[kmol/h]	22.22	0	0	-					
C_3H_8	[kmol/h]	3.18	0	0	-					
H_2O	[kmol/h]	1646.26	997.91	1000.89	0.30%					
H ₂	[kmol/h]	0.00	1276.74	1280.54	0.30%					
СО	[kmol/h]	0.00	22.24	22.30	0.30%					
CO ₂	[kmol/h]	7.60	15.98	16.93	5.94%					
Total flows	[kmol/h]	1966.84	2321.47	2329.28	0.34%					
Overall Carbon Ba	lance		1-D reactor model	Asp	oen					
Inlet gas flow rate		[kmol C/h]	349.19	349	0.19					
Outlet gas flow rate		[kmol C/h]	46.81	47.85						
CaCO ₃ equivalent fl	ow rate	[kmol /h]	298.68 30		02.38					
Reactor stock at bro	eakthrough time	[kmol C/h]	2.21	-						
Carbon Balance		[kmol C/h]	1.50	-1.04						
Error			0.43%	-0.30%						
Enthalpy Flows										
		1-D reactor mode	l Aspen]	Error					
Inlet	[MW]	-106.81	-106.91	0.10%						

Table A2 Example of the calculated variations in the material and enthalpy flows comparing the steady state ASPEN model and the 1D dynamic heterogeneous reactor model

Outlet	[MW]	-52.42	-52.57	0.29%

Economic Model:

The baseline equipment cost c_p^0 is calculated as presented in Equation A4. Where, A is the scale parameter while k1, k2, and k3 are fitting parameters as reported in Table A3.

 $\log_{10} \left[c_p^0 \right] = k_1 + k_2 \log_{10} A + k_3 \left[\log_{10} A \right]^2$ (Equation A4)

The bare module equipment cost C_{BM} is calculated using Equation A5. Where, F_{BM} is the bare module factor that considers the equipment construction material and the direct and indirect project costs as reported in Table A3.

 $C_{BM} = F_{BM} \cdot c_p^0 \qquad (\text{Equation A5})$

The bare module equipment cost C_{BM} is further modified to take into account contingency and contractor fee, which are assumed to be 18% of the bare module cost ².

Table A3 Cost function parameters for calculating the CAPEX of the eSER plants ³

Item	Туре	Scale parameter	k 1	k ₂	\mathbf{k}_3	F _{bm}	Ref. CEPCI
Air blower	Centrifugal Fan	Flow rate	3.539	-0.353	0.448	2.7	397
Syngas/ CO ₂ compressors	Centrifugal Compressor	Fluid power	2.290	1.360	-0.103	2.7	397
Water /CO ₂ pumps	Centrifugal Pump	Shaft power	3.389	0.054	0.154	3.2	397
Electric driver	Explosion Proof Drive	Shaft power	2.460	1.419	-0.180	1.5	397
Heat exchangers	Fixed tube	Area	4.831	-0.851	0.319	3.9	397
Steam generators	Steam boiler	Heat duty	6.962	-1.480	0.316	5.8	397

Item	Scale parameter	Reference size	Reference Cost	Scaling exponent	Ref. CEPCI
Sulfur guard bed	Natural gas mass flow rate	17.7 kg/s	1.5 M€	0.67	709
Pressure Swing Adsorber	H_2 mass flow rate	5.6 k/s	22.7 M€	0.67	576.5

Section B: Base case simulation results

Figure B1 breakthrough curves of the SER step for the base case plant (Figure 3). Working conditions: P=10 bar; S/C=4.8; T_{feed}=550°C; T_{bed,initial}=900°C. Left axis: solid lines: Reactor outlet species mole fractions (dry basis), Green: H₂, Red: CH₄, Blue: CO₂, and Black: CO. Right axis: Dashed line: Reactor outlet gas stream temperature.

щ	Т	Р	m	n			Мо	olar co	mposi	tion [%]		
#	[°C]	[bar]	[kg/s]	[kmol/h]	CH ₄	C_2H_6	C_3H_8	H_2	CO	CO_2	02	N_2	H_2O
1	25	10	1.60	330.2	89.0	7.0	1.0	0	0	2.0	0	1.0	0
2	15	1	3.26	651.8	0	0	0	0	0	0	0	0	100
3	30	10	4.98	994.5	0	0	0	0	0	0	0	0	100
4	365	10	1.60	330.2	89.0	7.0	1.0	0	0	2.0	0	1.0	0
5	182	10	8.24	1646.3	0	0	0	0	0	0	0	0	100
6	550	10	9.84	1976.5	14.7	1.1	0.1	0	0	0.4	0	0.1	84.0
7	831	10	6.14	2329.3	0.4	0	0	54.9	0.9	0.7	0	0.1	43.0
8	35	10	1.17	1337.8	0.6	0	0	95.9	1.6	1.2	0	0.2	0.5
9	107	30	0.65	1152.5	0	0	0	100	0	0	0	0	0
10	107	1	0.51	181.6	4.8	0	0	70.0	12.2	9.2	0	1.8	2.0
11	20	1	3.98	497.5	0	0	0	0	0	0	21.0	79.0	0
12	2003	1	4.49	604.9	0	0	0	0	0	7.9	2.0	65.3	24.8
13	104	1	4.49	604.9	0	0	0	0	0	7.9	2.0	65.3	24.8
14	900	1	3.69	302.3	0	0	0	0	0	100	0	0	0
15	38	110	3.69	302.3	0	0	0	0	0	100	0	0	0
16	124	2	1.55	310.0	0	0	0	0	0	0	0	0	100
17	182	10	1.20	240.0	0	0	0	0	0	0	0	0	100

Table B1 Base case plant (Figure 3) streams properties

Figure B2 TQ diagrams for Base case plant (Figure 3)

Section C: Equivalent CO₂ emissions

<u>+</u>			C ==)		U	0									
						eSE	R Plants						Ref. P	lants	
		Base case		e High Pressure Vaccum High S/C eSER-eSM Regen. High S/C eSEWG		Vaccum Regen.		High S/C		eSMR - WGS	F	ΓR	FTR	Plus	
		GWP20	GWP100	GWP20	GWP100	GWP20	GWP100	GWP20	GWP100	GWP20	GWP100	GWP20	GWP100	GWP20	GWP100
Including no CH ₄ leakage [*] Including 0.5% CH ₄ leakage ^{**} Including 1.5% CH ₄ leakage ^{**}	$\mathrm{kg}_{\mathrm{CO2~eq}}/\mathrm{kg}_{\mathrm{H2}}$	1.	52	1.6	50	1.7	73	1.3	30	0.9	92	1.	94	0.	91
	$\mathrm{kg}_{\mathrm{CO2~eq}}/\mathrm{kg}_{\mathrm{H2}}$	2.54	1.89	2.66	1.98	2.80	2.12	2.30	1.66	1.92	1.28	3.34	2.43	2.39	1.44
	$kg_{CO2 eq}/kg_{H2}$	4.60	2.63	4.79	2.86	4.93	2.89	4.32	2.39	3.92	2.00	6.17	3.45	5.35	2.51

Table C1 Equivalent CO₂ emissions (E_{CO2, eq}) considering 50 kgCO₂/MWh electric consumed

* Electrolysis with 65% H₂ production efficiency have a $E_{CO2, eq}$ of 2.56 kg_{CO2 eq}/kg_{H2} considering the same CIgrid.

** Considering 82.5 kgC02 eg/kgCH4 estimated over 20 years (GWP20) and 29.8 kgC02 eg/kgCH4 estimated over 100 years (GWP100) 5.

Section D: Sensitivity of LCOH to Selected Assumptions

Figure D1 Effect of A) plant operation lifetime, B) Manpower per shift, and C) Plant capacity factor on the levelized cost of hydrogen for the base case, high S/C, and eSER-eSMR-eSWEGS arrangement

References

- 1 A. Mostafa, I. Rapone, A. Bosetti, M. C. Romano, A. Beretta and G. Groppi, *Int. J. Hydrogen Energy*, 2023, **48**, 26475–26491.
- 2 R. Turton, Analysis, Synthesis, and Design of Chemical Processes Fourth Edition, 2013, vol. 53.
- 3 R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz and D. Bhattacharyya, *Analysis, Synthesis, and Design of Chemical Processes*, 2001, vol. 40.
- 4 A. de Cataldo, M. Astolfi, P. Chiesa, S. Campanari, E. Martelli, P. Silva, S. Bedogni, L. Ottolina, M. Tappani and M. C. Romano, *J. Eng. Gas Turbines Power*, 2023, **145**, 1–9.
- 5 M. C. Romano, C. Antonini, A. Bardow, V. Bertsch, N. P. Brandon, J. Brouwer, S. Campanari, L. Crema, P. E. Dodds, S. Gardarsdottir, M. Gazzani, G. Jan Kramer, P. D. Lund, N. Mac Dowell, E. Martelli, L. Mastropasqua, R. C. McKenna, J. G. M. S. Monteiro, N. Paltrinieri, B. G. Pollet, J. G. Reed, T. J. Schmidt, J. Vente and D. Wiley, *Energy Sci. Eng.*, 2022, **10**, 1944–1954.