

Figure S1. (a) Cross-sectional schematic of the micowell array electrode device. The distribution of the calculated electric field strength in the microwell array electrode device in (b) the x-y plane 10 μ m above the bottom of microwells and (c) the x-z plane through the centers of microwells along the line (i)-(ii) in Fig. S1(b).

S2 Calculation of the real part of CM factors

The DEP force acting on dielectric spherical particles with radius R and permittivity ε_p , suspended in a

medium with permittivity ε_{M} under an electric field gradient ∇E , can be described as follows¹:

 $F_{DEP} = 2\pi\varepsilon_M R^3 Re[K(\omega)]\nabla |E|^2 \#(S1)$

where $K(\omega)$ is the Clausius-Mossotti (CM) factor and given as follows:

$$K(\omega) = \frac{\varepsilon_p^* - \varepsilon_M^*}{\varepsilon_p^* + 2\varepsilon_M^*} \#(S2)$$

Here, ε_p^* and ε_M^* are the complex permittivity of the particle and the medium, respectively. These complex permittivities are written as:

$$\varepsilon^* = \varepsilon - j \frac{\sigma}{\omega} \#(S3)$$

in which σ is the conductivity, *j* is the imaginary unit, and ω is the angular frequency, which is related

to the applied frequency, f, by $\omega = 2\pi f$.

The single-shell model that contains a homogeneous core (cytoplasm) and an outer shell (cell membrane) was used to express the complex permittivity of cells. When this model is applied to a cell with radius R, membrane thickness d, complex permittivity of the cytoplasm ε_c^* , and complex permittivity of the membrane ε_m^* (Fig. S2(a)), it results in a complex effective permittivity of the entire

cell, ε_{p}^{eff*} , written as follows:

$$\varepsilon_{p}^{eff*} = \frac{\left(\varepsilon_{c}^{*} + 2\varepsilon_{m}^{*}\right)R^{3} - 2\left(\varepsilon_{m}^{*} - \varepsilon_{c}^{*}\right)\left(R - d\right)^{3}}{\left(\varepsilon_{c}^{*} + 2\varepsilon_{m}^{*}\right)R^{3} + \left(\varepsilon_{m}^{*} - \varepsilon_{c}^{*}\right)\left(R - d\right)^{3}}\varepsilon_{m}^{*}\#(S4)$$

In situations where $R \gg d$, as in mammalian cells, ε_m can be written as follows:

$$\varepsilon_m = C_m d\#(S5)$$

where C_m is the membrane capacitance. As shown here, C_m and R influence the CM factor and shift the

DEP spectrum (Figs. S2(b) and (c)).

Figure S2. (a) Schematic illustration of single-shell model. (b, c) Calculated results for the real part of the Clausius-Mossotti factor of single-shell particle with membrane thickness d = 7 nm, cytoplasm permittivity $\varepsilon_c = 60 \varepsilon_0$, cytoplasm conductivity $\sigma_c = 360$ mS m⁻¹, medium permittivity $\varepsilon_M = 78 \varepsilon_0$, medium conductivity $\sigma_M = 80$ mS m⁻¹, (b) radius R = 1.5 µm, membrane capacitance $C_m = 5, 20, 40$ mF m⁻², (c) R = 0.5, 1.5, 7.5 mm, $C_m = 20$ mF m⁻² at various frequencies.

Figure S3. Calculated results for the real part of the Clausius-Mossotti factor of HeLa cells, Connectosomes, and Liposomes at various frequencies.

	medium	medium	cytoplasm	cytoplasm	membrane	
	permittivity	conductivity	permittivity	conductivity	capacitance	radius
	ε _M	σ_{M}	ε _c	$\sigma_{ m c}$	C_{m}	R
	(F m ⁻¹)	(mS m ⁻¹)	(F m ⁻¹)	(S m ⁻¹)	(mF m ⁻²)	(µm)
HeLa cells	78 ε ₀	80	60 ε ₀	0.36	19	7.5
Liposomes	78 ε ₀	80	78 ε ₀	0.36	7.5	1.5

Table S1. Clausius-Mossotti parameters for HeLa cells and liposomes.

Figure S4. Fluorescence images of GPMVs trapped in microwells in (a) the absence and (b) the presence of Ca^{2+} .

1. "Dielectrophoresis", 2017, John Wiley & Sons, Ltd, 1.