Supporting Information

From Colors to Currents: A Hybrid Electrochemical and Colorimetric Sensor for Real-time Detection of Emerging Pollutants and pH monitoring

André L. Ferreira^{a1}, Mayra V. Paschoarelli^{b1}, William R. de Araujo^{b*} and, Lucas F. de Lima^{b,c*}

^aNano-Cell Interactions Lab., Departamento de Bioquímica e Biolgia Tecidual, Biology Institute, Universidade de Campinas, 13083-862, Campinas, SP, Brazil.
^bLaboratório de Sensores Químicos Portáteis, Departamento de Química Analítica, Instituto de Química, Universidade Estadual de Campinas – UNICAMP, 13083-970, Campinas, SP, Brazil.
^cDepartamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brasil.

¹ These authors contributed equally for this paper.

*Corresponding author:

E-mail address: <u>delimalf@unicamp.br</u> (Lucas Felipe de Lima) and wra@unicamp.br (William Reis de Araujo) Tel.: +5519 35213125.

Keywords: emerging pollutants, laser-scribed graphene, colorimetric and electrochemical sensing, portable device, real-time analyses.

Figure S1: Electrochemical behavior of BPA (**a**) and MP (**b**) in different scan rates ranging from 10 to 200 mV s⁻¹.

Figure S2: SWV optimization in the presence of 30 μ mol L⁻¹ BPA and MP in BR buffer (pH 8). A) step optimizations, b) frequency optimizations and c) amplitude optimization. All the results were conducted in the presence of 30 μ mol L⁻¹ BPA and MP in 0.1 mol L⁻¹ BR buffer (pH 8).

Figure S3: pH study using 30 μ mol L⁻¹ BPA and MP (a) SWV plots; (b) Ipa values in the function of pH; (c) Ep in function of pH values.

Figure S4: Analytical curves (**a-b**) fixing BPA and changing MP concentrations; (**c-d**) Analytical curves fixing MP and changing BPA concentration in 0.1 mol L^{-1} BR buffer (pH 8). All experiments were performed in triplicate (n=3), as indicated by the presence of error bars.

Figure S5: Colorimetric optimizations performed for nitrite detection **a**) volume of NED, **b**) volume of sulfanilamide and **c**) time of reaction. All experiments were performed in triplicate (n=3), as indicated by the presence of error bars.

Analytical Greenness report sheet

09/07/2024 15:35:29

Criteria	Score	Weight
1. Direct analytical techniques should be applied to avoid sample treatment.	0.85	2
2. Minimal sample size and minimal number of samples are goals.	1.0	2
3. If possible, measurements should be performed in situ.	0.33	2
4. Integration of analytical processes and operations saves energy and reduces the use of reagents.	1.0	2
5. Automated and miniaturized methods should be selected.	0.75	2
6. Derivatization should be avoided.	1.0	2
7. Generation of a large volume of analytical waste should be avoided, and proper management of analytical waste should be provided.	1.0	2
8. Multi-analyte or multi-parameter methods are preferred versus methods using one analyte at a time.	0.82	2
9. The use of energy should be minimized.	1.0	2
10. Reagents obtained from renewable sources should be preferred.	0.5	2
11. Toxic reagents should be eliminated or replaced.	1.0	2
12. Operator's safety should be increased.	1.0	2

Figure S6: AGREE reports obtained for our multiplex colorimetric and electrochemical device