Supporting Information

Exceptional quenching properties of tetrazine-based organic frameworks for fluorescently labeled nucleic acids and their applications in sensing

Chenggang Liu,^{‡a} Yanfei Kang,^{‡b} Wenjiao Li^a, Cheng Yao^a and Chan Song^{*a}

^a School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing

211816, China; Email: songchan@njtech.edu.cn

^b Tangshan Labor Technicians College, Tangshan, 063300, China

‡ These two authors contributed equally to this work.

Oligonucleotides	Oligonucleotide Sequences	
1-mer-FAM	5'-A-FAM-3'	
2-mer-FAM	5'-CA-FAM-3'	
3-mer-FAM	5'-CCA-FAM-3'	
6-mer-FAM	5'-TAA CCA-FAM-3'	
12-mer-FAM	5'-AGG CAG TAA CCA-FAM-3'	
24-mer-FAM	5'-AGG CAG TAA CCA AGG CAG TAA CCA-FAM-3'	
24-mer	5'-AGG CAG TAA CCA AGG CAG TAA CCA-3'	
26	5'-AGG CAG TAA CCA AGG CAG TAA CCA AGG CAG TAA CCA-FAM-	
30-mer-r Am	3'	
12-mer-Cy3	5'-AGG CAG TAA CCA-Cy3-3'	
12-mer-ROX	5'-AGG CAG TAA CCA-ROX -3'	
P-FAM	5'-FAM-AGT CAG TGT GGA AAA TCT CTA GC-3'	
Т	5'-GCT AGA GAT TTT CCA CAC TGA CTG AGA-3'	
T1	5'-GCT AGA GAT TTC CCA CAC TGA CTG AGA-3'	
Τ2	5'-GCT AGA G C T TTT CCA AAC TGA CTG AGA-3'	
Т3	5'-GCT T GA GAT A TT CC G CAC T C A CTG AGA-3'	
T4	5'-CGA GGC GAT GCC GAA CTC GA-3'	

Table S1. The oligonucleotides used in this work.

Figure S1. Solid ¹³C NMR spectra of TzF-9.

Figure S2. (A) X-ray powder diffraction patterns of TzF-9. (B) UV-vis spectrum of TzF-9 in water. $[TzF-9] = 20 \ \mu g \ mL^{-1}$.

Figure S3. (A) Fluorescence intensity at 518 nm of fluorescein (free FAM) with the different amount of TzF-9. [free FAM] = 50 nM. (B) UV-vis spectra of **24-mer** and supernatant separated from the mixture that TzF-9 adsorbed **24-mer** with different incubating time. [**24-mer**] = 2 μ M, [TzF-9] = 50 μ g mL⁻¹. (C) Fluorescence intensities of **12-mer-Cy3** at 562 nm in the absence and presence of TzF-9 under different pH condition. [**12-mer-Cy3**] = 50 nM, [TzF-9] = 25 μ g mL⁻¹.

Figure S4. (A) Fluorescence intensity at 518 nm of **P-FAM** and **P-FAM/T** with different concentration of TzF-9. (B) Quenching efficiency of **P-FAM** induced by TzF-9. [**P-FAM**] = 50 nM. (C) The signal-to-noise ratio (F/F_0) of sensing system with different concentration of TzF-9. *F* and F_0 are the fluorescence intensities at 518 nm of **P-FAM/T** and **P-FAM** with TzF-9, respectively. [**P-FAM**] = 50 nM, [**T**] = 50 nM.

Quencher	Detection limit	Linear range	D
	(U mL ⁻¹)	(U mL ⁻¹)	Keterence
i ₃ C ₂ nanosheet	0.16	1-7	1
AuNPs	0.38	2-40	2
MG	1	5-100	3
GO	0.1	0-10	4
TzF-9	0.41	1-120	This work

Table S2. Comparison of different fluorescence quenchers as the sensing platform for assay of DNase I activity.

Table S3. Analytical results for DNase I activities in 1% urine samples.

Sample	Added (U mL ⁻¹)	Determined (U mL ⁻¹)	Recovery (%)
1	0	-	_
2	10	10.2 ± 0.2	102.6 ± 2.0
3	100	101.5 ± 3.2	101.5 ± 3.2

Table S4. Comparison of different nanomaterial-based fluorescence quenchers as the sensing platforms for detection of ssDNA.

Quencher	Detection limit (nM)	Linear range (nM)	QE (%)	Reference
Pd NWs	6	10-100	88	6
SWCNH	1	1-100	83	7
MPC	1	3-150	90	8
PDA-co-SiO ₂ NPs	1	0-12	80	9
BQNPs	1.04	2-50	95	10
CuS NPs	0.8	0-20	95	11
TzF-9	0.79	1-125	95	This work

Table S5. Analytical results for ssDNA T in 1% urine samples.

Sample	Added (nM)	Determined (nM)	Recovery (%)
1	0	_	_
2	50	51.3 ± 1.8	102.6 ± 3.6
3	100	104.3 ± 0.9	104.3 ± 0.9

References

1. Peng, G.; Lin, B.; Guo, M.; Cao, Y.; Yu, Y.; Wang, Y., Enzyme activity termination by titanium carbide nanosheet and its application for the detection of deoxyribonuclease I. *Talanta* **2023**, *259*, 124533.

2. Liu, Y.; Xu, J.; Wang, Q.; Li, M.-J., Coupling coumarin to gold nanoparticles by DNA chains for sensitive detection of DNase I. *Anal. Biochem.* **2018**, *555*, 50-54.

3. Sun, S.-K.; Wang, B.-B.; Yan, X.-P., A label-free near-infrared fluorescent assay for the determination of deoxyribonuclease I activity based on malachite green/G-quadruplexes. *Analyst* **2013**, *138*, 2592-2597.

4. Lee, C. Y.; Park, K. S.; Jung, Y. K.; Park, H. G., A label-free fluorescent assay for deoxyribonuclease I activity based on DNA-templated silver nanocluster/graphene oxide nanocomposite. *Biosens. Bioelectron.* **2017**, *93*, 293-297.

5. Li, H.; Wang, L.; Zhai, J.; Luo, Y.; Zhang, Y.; Tian, J.; Sun, X., Tetracyanoquinodimethane nanoparticles as an effective sensing platform for fluorescent nucleic acid detection. *Anal. Methods* **2011**, *3*, 1051-1055.

6. Zhang, L.; Guo, S.; Dong, S.; Wang, E., Pd nanowires as new biosensing materials for magnified fluorescent detection of nucleic acid. *Anal. Chem.* **2012**, *84*, 3568-3573.

 Zhu, S.; Liu, Z.; Zhang, W.; Han, S.; Hu, L.; Xu, G., Nucleic acid detection using singlewalled carbon nanohorns as a fluorescent sensing platform. *Chem. Commun.* 2011, *47*, 6099-6101.
 Tan, H.; Tang, G.; Wang, Z.; Li, Q.; Gao, J.; Wu, S., Magnetic porous carbon nanocomposites derived from metal-organic frameworks as a sensing platform for DNA fluorescent detection. *Anal. Chim. Acta* 2016, *940*, 136-142.

9. Yang, S.; Liu, M.; Deng, F.; Mao, L.; Yuan, Y.; Huang, H.; Chen, J.; Liu, L.; Zhang, X.; Wei, Y., Biomimetic modification of silica nanoparticles for highly sensitive and ultrafast detection of DNA and Ag⁺ ions. *Appl. Surf. Sci.* **2020**, *510*, 145421.

10. Qi, X.; Hu, H.; Liang, L.; Lin, Y.; Liu, Y.; Sun, H.; Piao, Y., Fluorescence nanoprobes bearing low temperature-derived biochar nanoparticles as efficient quenchers for the detection of single-stranded DNA and 17β-estradiol and their analytical potential. *RSC Adv.* **2024**, *14*, 28077-28085.

11. Wang, H.; Song, S.; Hao, J.; Song, A., Hydrogels triggered by metal ions as precursors of network CuS for DNA detection. *Chem. - Eur. J.* **2015**, *21*, 12194-12201.