Supplementary Information

Experimental section

Materials: trisodium citrate dihydrate ($C_6H_5Na_3O_7 \cdot 2H_2O$), ethyl alcohol (C_2H_5OH), Sodium hydroxide (NaOH), nickel sulfate (NiSO₄ · 6H₂O), Sodium nitrite (NaNO₂), hydrochloric acid (HCl), deionized water (H₂O), salicylic acid ($C_7H_6O_3$), ammonium chloride (NH₄Cl), hydrofluoric acid (HF), potassium hydroxide (KOH), acetone (CH₃COCH₃), sodium hypochlorite solution (NaClO), nitric acid (HNO₃), cobaltous chloride (CoCl₂ · 6H₂O), sodium sulfate anhydrous (Na₂SO₄), sodium nitroferricyanide dihydrate ($C_5FeN_6Na_2O \cdot 2H_2O$). All the chemicals utilized were supplied by Chengdu Kelong Ltd in this work. A Zn plate (0.2 mm thick) and a Ti plate (0.5 mm thick) were purchased from Suzhou.

Preparation of TiO₂: Firstly, the Ti plate $(2.0 \times 4.0 \text{ cm}^2)$ was polished with sandpaper until its surface was smooth. Secondly, it was washed sequentially with acetone, alcohol, and deionized water for 10 min. Thirdly, the Ti plate was cleaned with a chemical solution (HF/HNO₃/H₂O = 1: 1: 1) and then washed with deionized water. Fourthly, the clean Ti plate was put into an autoclave containing 5 M NaOH and kept at 180°C for 24 hours. After the autoclave was naturally cooled to room temperature, the impurities on the surface were alternately washed with deionized water and ethanol. After drying, the prepared Na₂Ti₂O₅ nanoarrays were immersed in 1 M HCl for ion exchange, and the ion exchange process was kept for 2 h. Then, the obtained H₂Ti₂O₅ nanoarrays were washed with deionized water and ethanol. Finally, to get TiO₂ nanograss arrays, H₂Ti₂O₅ nanoarrays were annealed in a tube furnace at 450°C for 2 h under the atmosphere of Ar/H₂.

Preparation of NiCo-TiO₂: NiCo alloy was loaded on the surface of TiO₂ by electrodeposition. 0.13 M NiSO₄·6H₂O, 0.13 M Na₂SO₄, 0.1 M C₆H₅Na₃O₇·2H₂O, and 0.09 M CoCl₂·6H₂O were dissolved in 50 mL deionized water as the electrolyte for electrodeposition. Using a carbon rod as the counter electrode, a calomel electrode as the reference electrode, and a TiO₂ plate as the working electrode, polarize at 60 mA cm⁻² for 5 min in the above solution. Finally, the Ti plate was taken out and rinsed with water to obtain NiCo-TiO₂.

Characterizations: XRD data were acquired by an X-ray diffractometer with Cu Kα radiation (DX-2700B). SEM measurements were carried out on an X-ray diffractometer with Cu Kα radiation (DX-2700B). The absorbance data were measured on UV–vis spectrophotometer of SHIMADZU UV-2600. TEM image was obtained from an atomic-resolution scanning transmission electron microscopy (FEI Talos F200S Super) operated at 200 kV. XPS measurements were performed with Thermo Fischer ESCALAB Xi⁺.

Electrochemical measurements: All electrochemical measurements were performed on the CHI 660E electrochemical workstation (Shanghai, Chenhua) using a standard Nafion 117 membrane separated H-type three-electrode electrolytic bath. The electrolyte solution consisted of 0.1 M NaOH and 0.1 M NaNO₂ using NiCo-TiO₂ as the working electrode, graphite rod as the counter electrode, and saturated mercury oxide electrode as the reference electrode. All potentials reported in the work were calibrated for conversion to a reversible hydrogen electrode (RHE). The scanning rate of LSV is 5mV s⁻¹, and the potential window is -0.2V to -0.7V. The catalyst material of the working electrode was immersed in the electrolyte with an area of 0.25 cm².

Determination of NH₃: The NH₃ concentration in the solution was determined by colorimetry (the obtained electrolyte was diluted 50 times) using the indophenol blue method. In detail, 2 mL of the solution after the reaction was mixed with 2 mL of 1 M NaOH coloring solution containing 5% $C_7H_5NaO_3$ and 5% $C_6H_5Na_3O_7$ ·2H₂O. Then, 1 mL oxidizing solution of 0.05 M NaClO and 0.2 mL catalyst solution of $C_5FeN_6Na_2O$ (1 wt%) were added to the above solution. After standing in the dark for 2 h, the UV– vis absorption spectra were measured. The concentration of NH₃ was identified using the absorbance at a wavelength of 655 nm. The concentration-absorbance curve was calibrated using the standard NH₄Cl solution with NH₃ concentrations of 0, 0.2, 0.5, 1.0, 2.0, 3.0, and 5.0 ppm in 0.1 M NaOH solution. The fitting curve in Fig. S5 (y =0.32909 x+0.04845, R²=0.9996) shows a good linear relation of absorbance value with NH₃ concentration.

Determination of FE and NH₃ yield: The FE for NO_2^- reduction was defined as the amount of electric charge used for synthesizing NH₃ divided by the total charge passed through the electrode during electrolysis.

FE toward NH₃ via NO₂⁻RR is calculated by the following equation:

$$FE = (6 \times F \times C_{NH_2} \times V) / (M_{NH_2} \times Q) \times 100\%$$

The total amount of NH₃ produced was measured using colorimetric methods. The yield rate of NH₃ is calculated as follows:

NH₃ yield rate =
$$(C_{NH_3} \times V) / (M_{NH_3} \times t \times A)$$

Where F is the Faradaic constant (96485 C mol⁻¹), C_{NH_3} is the concentration of NH₃, V is the volume of electrolyte in the anode compartment (45 mL), M_{NH_3} is the molar mass of NH₃, Q is the total charge passing the electrode, t is the electrolysis time, and A is the geometric surface area (0.25 cm²).

Zn-NO₂⁻ battery preparation: Zn-NO₂⁻ battery was assembled with NiCo-TiO₂ (0.25 cm²) as the cathode and a polished Zn plate (0.25 cm²) as the anode. A typical H-type cell that contains 45 mL cathode electrolyte (0.1 M NaOH + 0.1 M NaNO₂) and 45 mL anode electrolyte (6 M KOH) separated by Nafion 117 membrane. Zn-NO₂⁻ battery was tested at room temperature with a CHI 660E electrochemical workstation.

Fig. S1 Schematic diagram of the synthesis of $NiCo-TiO_2$.

Fig. S2 XRD spectrum of Ni-TiO₂.

Fig. S3 SEM images of Ni-TiO₂.

Fig. S4 XPS spectrum of Ni element in Ni-TiO₂.

Fig. S5 LSV curves of NiCo-TiO₂, NiCo-Ti, and TiO₂.

Fig. S6 (a) UV-vis absorption spectra and corresponding (b) calibration curve used for calculation of $\rm NH_3$ concentration.

Fig. S7 (a) Chronoamperometry curves (from -0.2 V to -0.7 V) and (b) corresponding UV-vis absorption spectra of NiCo-TiO₂ for electrogenerated NH₃ at various potentials.

Fig. S8 NH_3 yields and FEs of Ni-TiO₂ at different potentials.

Fig. S9 Cyclic voltammetry curves of NiCo-TiO₂, Ni-TiO₂ and TiO₂ at different scan rates (20, 40, 60, 80, and 100 mV s⁻¹).

Fig. S10 LSV curve of NiCo-TiO $_2$ with different Ni/Co ratios in 0.1 M NaOH with and without 0.1 M NaNO $_2$

Fig.S11 NH $_3$ yields and FEs of NiCo-TiO $_2$ during the alternating cycling tests.

Fig.S12 Chronoamperometry curves of NiCo-TiO $_2$ for NH $_3$ generation during the alternating cycle experiments at -0.4 V.

Fig. S13 (a) Chronoamperometry curves and (b) corresponding UV-vis absorption spectra of NiCo-TiO₂ for electrochemical catalytic production of NH_3 during recycling tests in 0.1 M NaOH with 0.1 M NO₂⁻ at -0.4 V.

Fig. S14 Chronoamperometry curves of Ni-Mo-P/TiO₂ after 10 h electrolysis.

Fig. S15 LSV curves of NiCo-TiO₂ before and after 10 h electrolysis in 0.1 M NaOH with 0.1 M NO₂⁻.

Fig. S16 XRD spectrum of NiCo-TiO $_2$ after continuous cycle tests.

Fig. S17 SEM images for NiCo-TiO_2 after NO_2–RR electrolysis.

Fig. S18 The XPS spectra of (a) Ni 2p and (b) Co 2p regions of NiCo-TiO₂ after longtime electrolysis.

NO ₂ ⁻ RR electrocatalysts under ambient conditions.								
Catalyst	Electrolyte	Potential	NH ₃ yield	FE	Ref.			
		(V vs. RHE)	$(\mu g h^{-1} cm^{-2})$ (%)	(%)				
NiCo-TiO ₂	0.1 M NaOH	-0.4V	18736.2	97.5%	This			
	(0.1 M NO ₂ ⁻)				work			
V-TiO ₂ /TP	0.1 M NaOH	-0.6V	7083.9	93.2%	1			
	(0.1 M NO ₂ ⁻)				1			
Ni@TiO ₂ /TP	0.1 M NaOH	-0.5V	9667.8	98.5%	2			
	(0.1 M NO ₂ ⁻)							
WO ₂	0.1M NaOH	-0.9V	14964.25	94.3%	3			
	(0.1 M NO ₂ ⁻)							
Ni-Mo-P/TiO ₂	0.1M NaOH	-0.6V	16124.76	95.6%	4			
	(0.1 M NO ₂ ⁻)							
MoO ₂	0.5 M Na ₂ SO ₄	$-0.8\mathrm{V}$	8678.4	94.5%	5			
	(0.1 M NO ₂ ⁻)							
NiWO4	0.1M NaOH	-0.4V	10 974.36	97.6%	6			
	(0.1 M NO ₂ ⁻)							
NiS ₂ @TiO ₂	0.1 M NaOH	-0.5V	8251.8	92.1%	7			
	(0.1 M NO ₂ ⁻)							
Ni ₂ P	0.1 M PBS	-0.3V	2692.2	90.2%	8			
nanosheet	(200 ppm NO ₂ ⁻)							
P-doped TiO ₂	0.1 M Na ₂ SO ₄	-0.6V	9533.6	90.6%	9			
	(0.1 M NO ₂ ⁻)							
Cu ₃ P@TiO ₂	0.1 M NaOH	-0.7V	22212.2	97.1%	10			
	0.1M NaNO ₂							
A-TiO _{2-X}	0.1 M NaOH	-0.8V	12,230.1	91.1%	11			
	(0.1 M NO ₂ ⁻)							

Table S1. Comparison of the catalytic performances of NiCo-TiO2 with other reported

S23

Ni-TiO ₂ /TP	0.1 M NaOH	$-0.5\mathrm{V}$	6464.56	94.89%	12
	(0.1 M NO ₂ ⁻)				
CF@Cu ₂ O	0.1 M PBS	-0.6V	7510.73	94.21%	13
	(0.1 M NO ₂ ⁻)				
Ni@MDC	0.1 M NaOH	$-0.8\mathrm{V}$	5100	65.4%	14
	(0.1 M NO ₂ ⁻)				
Cu@TiO ₂	0.1 M Na ₂ SO ₄	-0.6V	8642.8	95.3%	15
	(0.1 M NO ₂ ⁻)				
TiO _{2-x}	0.1 M K ₂ SO ₄	$-0.7\mathrm{V}$	7898	92.7%	16
	(0.1 M NO ₂ ⁻)				
Ag@TiO ₂ /TP	0.1 M NaOH	$-0.5\mathrm{V}$	8743.1	96.4%	17
	(0.1 M NO ₂ ⁻)				
NiCu@TiO ₂	0.1 M NaOH	$-0.5\mathrm{V}$	11712.49	96.25%	18
	(0.1 M NO_2^{-})				

References

- H. Wang, F. Zhang, M. Jin, D. Zhao, X. Fan, Z. Li, Y. Luo, D. Zheng, T. Li, Y. Wang, B. Ying, S. Sun, Q. Liu, X. Liu and X. Sun, *Mater. Today Phy.*, 2023, 30, 100944.
- X. Ji, C. Ma, F. Zhang, X. He, X. Fan, J. Li, Z. Li, L. Ouyang, L. Zhang, T. Li, D. Zhao, Y. Wang, J. Zhang, Z. Cai, S. Sun, A. A. Alshehri, Q. Lu and X. Sun, ACS Sustainable Chem. Eng., 2023, 11, 2686-2691.
- H. Qiu, Q. Chen, X. An, Q. Liu, L. Xie, J. Zhang, W. Yao, Y. Luo, S. Sun, Q. Kong, J. Chen and X. Sun, *J. Mater. Chem. A*, 2022, 10, 24969-24974.
- Z. Ren, Q. Chen, J. Zhang, X. An, Q. Liu, L. Xie, W. Yao, X. Sun and Q. Kong, Mater. Today Phy., 2023, 36, 101162.
- G. Wang, Q. Chen, X. An, Q. Liu, L. Xie, J. Zhang, W. Yao, X. Liu, S. Sun, X. Sun and Q. Kong, *Colloid. Surf. A*, 2023, 657, 130549.
- H. Qiu, Q. Chen and J. J. I. C. F. Zhang, *Inorg. Chem. Front.*, 2023, 10, 3909-3915.
- X. He, L. Hu, L. Xie, Z. Li, J. Chen, X. Li, J. Li, L. Zhang, X. Fang, D. Zheng, S. Sun, J. Zhang, A. Ali Alshehri, Y. Luo, Q. Liu, Y. Wang and X. Sun, *J. Colloid Interf. Sci.*, 2023, 634, 86-92.
- G. Wen, J. Liang, L. Zhang, T. Li, Q. Liu, X. An, X. Shi, Y. Liu, S. Gao, A. M. Asiri, Y. Luo, Q. Kong and X. Sun, *J. Colloid Interf. Sci.*, 2022, 606, 1055-1063.
- L. Ouyang, X. He, S. Sun, Y. Luo, D. Zheng, J. Chen, Y. Li, Y. Lin, Q. Liu, A.
 M. Asiri and X. Sun, *J. Mater. Chem. A*, 2022, 10, 23494-23498.
- Z. Cai, D. Zhao, X. Fan, L. Zhang, J. Liang, Z. Li, J. Li, Y. Luo, D. Zheng, Y. Wang, T. Li, H. Yan, B. Ying, S. Sun, A. A. Alshehri, H. Yan, J. Xu, Q. Kong and X. Sun, *Small*, 2023, 19, 2300620.
- Z. Ren, Q. Chen, X. An, Q. Liu, L. Xie, J. Zhang, W. Yao, M. S. Hamdy, Q. Kong and X. Sun, *Inorg. Chem.*, 2022, 61, 12895-12902.
- 12. Z. Cai, C. Ma, D. Zhao, X. Fan, R. Li, L. Zhang, J. Li, X. He, Y. Luo, D. Zheng,

Y. Wang, B. Ying, S. Sun, J. Xu, Q. Lu and X. Sun, *Mater. Today Energy*, 2023, 31, 101220.

- Q. Chen, X. An, Q. Liu, X. Wu, L. Xie, J. Zhang, W. Yao, M. S. Hamdy, Q. Kong and X. J. C. C. Sun, *Chem. Chem. Commun.*, 2022, 58, 517-520.
- X. He, X. Li, X. Fan, J. Li, D. Zhao, L. Zhang, S. Sun, Y. Luo, D. Zheng, L. Xie,
 A. M. Asiri, Q. Liu and X. Sun, *ACS Appl. Nano Mater.*, 2022, 5, 14246-14250.
- L. Ouyang, X. Fan, Z. Li, X. He, S. Sun, Z. Cai, Y. Luo, D. Zheng, B. Ying, J. Zhang, A. A. Alshehri, Y. Wang, K. Ma and X. Sun, *Chem. Commun.*, 2023, 59, 1625-1628.
- D. Zhao, J. Liang, J. Li, L. Zhang, K. Dong, L. Yue, Y. Luo, Y. Ren, Q. Liu, M.
 S. Hamdy, Q. Li, Q. Kong and X. Sun, *Chem. Commun.*, 2022, **58**, 3669-3672.
- X. Fan, X. He, X. Ji, L. Zhang, J. Li, L. Hu, X. Li, S. Sun, D. Zheng, Y. Luo, Y. Wang, L. Xie, Q. Liu, B. Ying and X. Sun, *Inorg. Chem. Front.*, 2023, 10, 1431-1435.
- L. Cai, A. Zhang, Y. Liang, X. Fan, X. He, C. Yang, L. Ouyang, D. Zheng, S. Sun, Y. Luo, Q. Liu, S. Alfaifi, A. Farouk, M. S. Hamdy, W. Zheng, Q. Kong and X. Sun, *Mater. Today Energy*, 2023, **38**, 101428.