Supporting Information

HFIP-Mediated Cascade Aminomethylation and Intramolecular Cyclization of Allenamides with N,O-Acetals to Access Tetrahydro- β -carboline Derivatives

Dhananjay Chaudhary^a, Chandra Shekhar Maurya^{ab}, Urmila Unnikrishnan^a and Malleswara Rao Kuram^{*ab}

^aMedicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow- 226031, U.P., India

^bAcademy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India Email: malleswara.kuram@cdri.res.in

1	General Information/Analytical Methods/Materials	S2
2	Preparation of starting materials	S3-S4
3	General Procedure	S5
4	Optimization of the reaction conditions	S5
5	Characterization data of isolated products	S6-S15
6	Gram scale synthesis	S15
7	Synthetic transformations	S15-S16
8	Derivatives of biologically important molecules	S17
9	Control Experiments	S17
10	XRD Data for 3aa	S17-S19
11	Reference	S20
12	NMR Spectra	S21-S52

TABLE OF CONTENTS

1. General Information:

Unless otherwise noted, all the reactions were performed using oven-dried Schlenk tubes under nitrogen. The reactions were monitored by Merck silica gel 60 F_{254} precoated plates (0.25 mm) visualizing under UV light (254 nm) or I_2 staining. The temperature mentioned for any reaction is corresponding to the oil bath temperature. Column chromatography was performed using silica gel 60-120 Å or 100-200 Å mesh of Merck Company. The room temperature recorded in our laboratory is around 25-30 °C.

2. Analytical Methods:

¹H, ¹³C, and ¹⁹F nuclear magnetic resonance spectra were recorded on Bruker Avance III 400 MHz spectrometer at 25 °C. NMRs of the products were measured in CDCl₃. The chemical shifts in ¹H NMR and ¹³C{¹H} NMR spectra are reported in parts per million (ppm) and are referenced to the residual solvent signal as the internal standard; ¹H NMR spectra (CDCl₃: δ 7.26 ppm or TMS: δ 0.00 ppm) and ¹³C (CDCl₃: δ 77.16). The coupling constant (J) was reported in Hertz (Hz). Splitting patterns are denoted as "s" for singlet; "d" for doublet; "t" for triplet; "q" for quartet; "sext" for sextet; "sept" for septet; "m" for multiplet, "br" for broad; "dt" for doublet of triplets; "td" for triplet of doublets. ESI-HRMS were recorded on AGILENT 6520 Q-TOF spectrometer.

3. Materials:

All the commercially available reagents, starting materials and solvents were purchased from Sigma-Aldrich, Alfa Aesar, Merck, Spectrochem, Avra Synthesis and Glr Innovations Pvt. Ltd., and are used directly as received without any further purification. Solvent HFIP was purchased from Spectrochem. The starting materials are prepared according to the previously reported methods.

4. Preparation of Starting materials:

General Procedure A for Allenamides 1:

Step 1: Procedure for alkylation:

To a solution of tryptamine I (1.00 equiv) in DMF under N_2 balloon at rt was added NaH (60% dispersion in mineral oil, 3.5 equiv) slowly, with vigorous stirring, and the stirring was continued at rt. After 30 minutes, the solution was cooled to 0 °C in an ice bath, and the appropriate alkyl halide (1.1 equiv) was added dropwise by syringe over three minutes. Stirring was continued at 0 °C for 30 minutes, and the reaction was allowed to warm to rt, and the stirring was continued for 12 hours. After the reaction was complete, the mixture was quenched with H_2O , the quenched mixture was extracted three times with ethylacetate, and dried over anhyd. Na_2SO_4 . The filtrate was concentrated under reduced pressure and used for the next step without purification.

Step 2: Procedure for tosylation:

To a solution of *N*-alkyltryptamine II (1.00 equiv) in CH_2CI_2 under N_2 balloon was added Et_3N (1.50 equiv). The solution was cooled to 0 °C in an ice bath and *p*-toluenesulfonyl chloride (1.01 equiv) was added in one portion. The solution was stirred for 15 minutes, then the ice bath was removed and allowed to warm up to ambient temperature (20 to 25 °C) and stirred for an additional 5 hours. The reaction was then quenched with 1 N aq. HCl (equal volume to CH_2CI_2 was used) and the organic layer was separated and washed with another portion of 1N aq. HCl. The combined aqueous layers were then combined and back extracted with CH_2CI_2 , then the organic layers are combined, dried over anhydrous Na_2SO_4 , filtered, and concentrated in vacuo. The resulting crude residue was purified by flash chromatography to afford *N*-tosyltryptamine III.

Step 3: Procedure for propargylamides:

To a solution of the crude *N*-tosyltryptamine product **III** (1.00 equiv) in acetone, K_2CO_3 (2.0 equiv) and 3bromopropyne (1.5 equiv.) were added. Then the mixture was stirred in an oil bath at 60 °C for overnight. After the reaction was complete, the mixture was quenched with H_2O , and the quenched mixture was extracted three times with ethylacetate and dried over anhyd. Na_2SO_4 . The filtrate was concentrated under reduced pressure and purified by flash column chromatography to give the propargylamide **IV**.

Step 4: Procedure for allenation reaction:

To a solution of propargylamide **IV** (1.0 equiv) in THF was added ^tBuOK (0.8 equiv) at 0 °C. The reaction was stirred at room temperature for 1 h before being concentrated under reduced pressure. Subsequently, the residue was suspended in DCM and then filtered through Celite. The filtrate was concentrated under reduced pressure and the crude residue was purified by flash column chromatography to give the allenamide **1**.

4.2. General Procedure B for N,O-acetals 2: Prepared according to the literature procedures.²

To a solution of amine **S1** (20 mmol) in MeOH (20 mL) was added paraformaldehyde (50 mmol), K_2CO_3 (40 mmol) and Na_2SO_4 (40 mmol) sequentially. The mixture was stirred at rt for 12 h, then filtered and washed with CH_2Cl_2 (20 mL X 3), the filtrate was concentrated under vacuum to give a mixture of oil and solid (paraformaldehyde). The mixture was dissolved in Et_2O (50 mL), filtered through a pad of Celite and anhydrous Na_2SO_4 , washed with Et_2O (10 mL X 3). The combined filtrates were concentrated to about 20 mL, filtered through a pad of Celite and anhydrous Na_2SO_4 , again, washed with Et_2O (10 mL X 3) and concentrated give N,O-acetals **2**, which was pure enough and used directly.

Table S2: N,O acetals employed in the reaction

4.3. General Procedure C for the synthesis of 3aa-3ta, and 3ab-3ai:

An oven-dried Schlenk/Seal tube was charged with **N,O-acetals 2** (1.5 equiv) in **HFIP** (3 mL), and then **allenamide 1** (0.3 mmol, 1.0 equiv) was added to the reaction mixture. The reaction was stirred at **room temperature (rt)** for **18 h**, and the solvent was evaporated under reduced pressure. The reaction mixture was purified by flash chromatography (EtOAc in Hexane) on silica gel (100-200 mesh), to give the corresponding product **3**.

4.4 Optimization of the reaction conditions:^a

S.N.	Solvent /Additives	Temp °C	Time h	3aa	4 a	5a
1	HFIP	80	18 h	60	32	nd
2	MeOH	80	18 h	nd	nd	nd
3	ⁱ PrOH	80	18 h	nd	nd	nd
4	TFE	80	18 h	64	25	nd
5	HFIP	50	18 h	(74)	(20)	nd
6	HFIP	rt	18 h	(75)	(18)	nd
7	HFIP	rt	5 h	61	22	nd
8	HFIP	rt	10 h	67	18	nd
9	HFIP and NaOAc (30 mol%)	rt	18 h	(77)	(16)	nd
10	HFIP and NaOAc (50 mol%)	rt	18 h	51	10	nd
11	DCM (0.12 M): HFIP (5.0 equiv) and NaOAc (30 mol%)	rt	18 h	70	22	nd
12	pTSA (5.0 equiv) in DCM	rt	18 h	trace	55	nd
13	AcOH	rt	18 h	35	51	nd
14	TFA	rt	18 h	nd	nd	nd
15	TfOH (5.0 equiv) in DCM	rt	18 h	nd	nd	nd
16	HFIP under N ₂	rt	18 h	(70)	(20)	nd
17	CPA (10 mol%) in cyclohexane (1 mL)	60	24 h	22	trace	nd
18	CuCl ₂ (10mol%) in DCM	rt	24 h	68	trace	trace

^a**Reaction conditions: 1a** (0.027 mmol, 1.0 equiv), **2a** (1.5 equiv) in HFIP (1 mL) at rt for 18 h. ¹H NMR yield using 1,3,5-trimethoxybenzene as internal standard. nd = not detected. Isolated yields on parentheses using **1a** (0.3 mmol, 1.0 equiv), **2a** (1.5 equiv) in HFIP (3 mL). CPA = (R)-(-)-1,1'-Binaphthalene-2,2'-diyl hydrogen phosphate.

5. Characterization data of isolated products

4-(2-(9-methyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)allyl)morpholine (3aa):

Prepared according to the general procedure **C** from **1a** (110 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **3aa** as a white solid (105 mg, 75% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 163-165 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 7.8 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.16 (td, *J* = 6.9, 1.0 Hz, 1H), 7.04 – 7.00 (m, 1H), 6.98 (d, *J* = 8.0 Hz, 2H), 5.91 (s, 1H), 5.19 (s, 1H), 4.50 (s, 1H), 4.00 (dd, *J* = 14.8, 5.9 Hz,

1H), 3.83 - 3.70 (m, 4H), 3.51 (s, 3H), 3.44 - 3.36 (m, 1H), 2.81 (d, J = 13.3 Hz, 1H), 2.67 - 2.56 (m, 4H), 2.48 - 2.32 (m, 3H), 2.17 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.4, 137.8, 137.1, 131.7, 129.3, 126.8, 126.4, 121.6, 119.0, 118.9, 118.2, 108.8, 108.2, 67.4, 61.0, 53.8, 53.5, 38.6, 29.3, 21.4, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₃₂N₃O₃S 466.2159; found 466.2159.

4-(2-(2-((4-isopropylphenyl)sulfonyl)-9-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1yl)allyl)morpholine (3ba):

Prepared according to the general procedure **C** from **1b** (118 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **3ba** as a brown liquid (91 mg, 61% yield). Reaction time: 18 h. Reaction temperature: room temperature. ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.2 Hz, 2H), 7.22 - 7.19 (m, 2H), 7.14 (t, *J* = 8.2 Hz, 1H), 6.98 (t, *J* = 8.2 Hz, 3H), 5.88 (s, 1H), 5.20 (s, 1H), 4.53 (s, 1H), 4.02 (dd, *J* = 14.8, 5.3 Hz, 1H), 3.80 - 3.73 (m, 4H), 3.51 (s, 3H), 3.44 - 3.36 (m, 1H), 2.82 (d,

 $J = 13.2 \text{ Hz}, 1\text{H}, 2.72 - 2.63 \text{ (m, 2H)}, 2.55 \text{ (brs, 2H)}, 2.46 - 2.37 \text{ (m, 2H)}, 2.04 \text{ (s, 1H)}, 1.27 - 1.23 \text{ (m, 2H)}, 0.99 - 0.97 \text{ (m, 5H)}. {}^{13}\text{C}{}^{1}\text{H} \text{NMR} (125 \text{ MHz}, \text{CDCl}_{3}): \delta 154.1, 143.3, 137.7, 137.0, 131.6, 127.0, 126.6, 126.4, 121.6, 119.0, 118.1, 108.7, 108.1, 67.4, 61.0, 53.8, 53.6, 38.7, 34.0, 29.2, 23.6, 23.4, 19.4. HRMS (ESI-TOF) m/z: <math>[M + H]^+$ Calcd for $C_{28}H_{36}N_3O_3S 494.2472$; found 494.2472.

4-(2-(2-((4-fluorophenyl)sulfonyl)-9-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1yl)allyl)morpholine (3ca):

Prepared according to the general procedure **C** from **1c** (112 mg, 0.3 mmol). Flash column chromatography (25% EtOAc in Hexane) afforded the desired product **3ca** as a white solid (93 mg, 66% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 145-146 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.70 – 7.66 (m, 2H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 7.1 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.04 (t, *J* = 7.3 Hz, 1H), 6.87 (t, *J* = 8.5 Hz, 2H), 5.95 (s, 1H), 5.21 (s, 1H), 4.51 (s,

1H), 4.01 (dd, J = 14.9, 6.0 Hz, 1H), 3.83 – 3.71 (m, 4H), 3.52 (s, 3H), 3.47 – 3.39 (m, 1H), 2.82 (d, J = 13.3 Hz, 1H), 2.74 – 2.57 (m, 4H), 2.51 – 2.27 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.9 (d, J = 255.0 Hz), 143.2, 137.1, 136.9 (d, J = 3.0 Hz), 131.5, 129.6, 129.5, 126.3, 121.9, 119.2 (d, J = 6.2 Hz), 118.2, 116.1, 115.9 (d, J = 22.4 Hz), 108.9, 108.1, 67.4, 61.0, 53.9, 53.7, 38.7, 29.4, 19.5. ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -105.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₉FN₃O₃S 470.1908; found 470.1908.

4-(2-(2-((4-chlorophenyl)sulfonyl)-9-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1yl)allyl)morpholine (3da):

Prepared according to the general procedure **C** from **1d** (116 mg, 0.3 mmol). Flash column chromatography (25% EtOAc in Hexane) afforded the desired product **3da** as a white solid (99 mg, 68% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 155-157 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J* = 8.6 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 4.6 Hz, 1H), 7.21 – 7.16 (m, 3H), 7.05 (t, *J* = 7.3 Hz, 1H), 5.93 (s, 1H), 5.21 (s, 1H), 4.52 (s, 1H), 4.00 (dd, *J* = 14.9, 6.1 Hz, 1H), 3.83 – 3.70 (m, 4H), 3.52 (s,

3H), 3.48 - 3.39 (m, 1H), 2.81 (d, J = 13.2 Hz, 1H), 2.75 - 2.51 (m, 5H), 2.48 - 2.29 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.2, 139.4, 139.1, 137.2, 131.5, 129.0, 128.3, 126.3, 121.9, 119.3, 118.3, 108.9, 108.2, 67.4, 61.0, 53.9, 53.8, 38.7, 29.4, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₉ClN₃O₃S 486.1613; found 486.1614.

4-(2-(2-((4-bromophenyl)sulfonyl)-9-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1yl)allyl)morpholine (3ea):

Prepared according to the general procedure **C** from **1e** (129 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **3ea** as a white solid (115 mg, 72% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 145-147 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.25 (d, *J* = 5.3 Hz, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 7.06 (d, *J* = 7.3 Hz, 1H), 5.93 (s, 1H), 5.21 (s, 1H), 4.52 (s, 1H), 4.00 (dd, *J* = 14.8, 6.1 Hz, 1H), 3.83 – 3.71 (m, 4H), 3.52 (s, 3H), 3.48 – 3.39 (m, 1H), 2.81

(d, J = 13.2 Hz, 1H), 2.67 – 2.51 (m, 5H), 2.48 – 2.29 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.1, 139.9, 137.2, 132.0, 131.5, 128.4, 127.6, 126.3, 121.9, 119.3, 118.3, 108.9, 108.2, 67.4, 61.0, 53.9, 53.8, 38.7, 29.4, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₉BrN₃O₃S 530.1108; found 530.1106.

4-(2-(2-((4-iodophenyl)sulfonyl)-9-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)allyl)morpholine (3fa):

Prepared according to the general procedure **C** from **1f** (143 mg, 0.3 mmol). Flash column chromatography (25% EtOAc in Hexane) afforded the desired product **3fa** as a white solid (121 mg, 70% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 198-200 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.25 (d, *J* = 3.3 Hz, 1H), 7.22 – 7.18 (m, 1H), 7.08 – 7.04 (m, 1H), 5.91 (s, 1H), 5.21 (s, 1H), 4.52 (s, 1H), 3.99 (dd, *J* = 14.9, 6.2 Hz, 1H),

3.82 - 3.70 (m, 4H), 3.52 (s, 3H), 3.47 - 3.38 (m, 1H), 2.80 (d, J = 13.3 Hz, 1H), 2.57 - 2.50 (m, 5H), 2.48 -

2.30 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.1, 140.5, 137.9, 137.1, 131.5, 128.2, 126.3, 122.0, 119.3, 118.3, 108.9, 108.2, 99.9, 67.4, 61.0, 53.9, 53.8, 38.7, 29.4, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₉IN₃O₃S 578.0969; found 578.0966.

4-(2-(9-methyl-2-((4-(trifluoromethoxy)phenyl)sulfonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1yl)allyl)morpholine (3ga):

Prepared according to the general procedure **C** from **1g** (130 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **3ga** as a white solid (78 mg, 48% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 158-160 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.8 Hz, 2H), 7.25 (d, *J* = 5.3 Hz, 1H), 7.24 (d, *J* = 8.2 Hz, 1H), 7.20 – 7.16 (m, 1H), 7.05 – 6.99 (m, 3H), 5.94 (s, 1H), 5.22 (s, 1H), 4.54 (s, 1H), 4.01 (dd, *J* = 14.9, 6.3 Hz,

1H), 3.83 - 3.71 (m, 4H), 3.52 (s, 3H), 3.48 - 3.44 (m, 1H), 2.82 (d, J = 13.3 Hz, 1H), 2.76 - 2.51 (m, 5H), 2.48 - 2.27 (m, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 152.0, 143.1, 139.1, 137.1, 131.4, 129.0, 126.2, 122.0, 120.6, 119.4, 119.3, 118.2, 108.8, 108.1, 67.4, 61.0, 53.9, 53.8, 38.8, 29.3, 19.5. ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -57.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₂₉F₃N₃O₄S 536.1825; found 536.1826.

4-(2-(2-((3-bromophenyl)sulfonyl)-9-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1yl)allyl)morpholine (3ha):

Prepared according to the general procedure **C** from **1h** (129 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **3ha** as a white solid (115 mg, 72% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 128-130 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (s, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.35 (d, *J* = 7.9 Hz, 1H), 7.25 – 7.23 (m, 2H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.04 – 7.00 (m, 2H), 5.92 (s, 1H), 5.23 (s, 1H), 4.56 (s, 1H), 4.04 (dd, *J* = 14.9, 6.2 Hz, 1H), 3.84 – 3.73

(m, 4H), 3.54 (s, 3H), 3.50 – 3.47 (m, 1H), 2.82 (d, J = 13.2 Hz, 1H), 2.72 – 2.51 (m, 5H), 2.48 – 2.36 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.1, 142.4, 137.2, 135.4, 131.3, 130.2, 130.0, 126.3, 125.1, 122.4, 121.9, 119.5, 119.2, 118.2, 108.9, 108.0, 67.5, 61.0, 53.9, 38.9, 29.3, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₉BrN₃O₃S 530.1108; found 530.1111.

4-(2-(9-methyl-2-(o-tolylsulfonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)allyl)morpholine (3ia):

Prepared according to the general procedure **C** from **1i** (110 mg, 0.3 mmol). Flash column chromatography (20% EtOAc in Hexane) afforded the desired product **3ia** as a white solid (88 mg, 63% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 158-160 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, *J* = 7.9 Hz, 1H), 7.41 – 7.35 (m, 2H), 7.28 – 7.25 (m, 2H), 7.22 (t, *J* = 6.6 Hz, 1H), 7.18 (d, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 7.3 Hz, 1H), 5.79 (s, 1H), 5.19 (s, 1H), 4.54 (s, 1H), 3.98 (dd, *J* = 14.9, 5.2 Hz, 1H), 3.72 – 3.62 (m, 4H), 3.52 (s, 3H), 3.48 – 3.39 (m, 1H), 3.15 (d, *J* = 13.2 Hz, 1H), 2.67 (d, *J* = 13.2 Hz, 1H), 2.59 –

2.51 (m, 4H), 2.46 (s, 3H), 2.24 – 2.18 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.2, 139.0, 137.8, 137.2,

4-(2-(2-((2-bromophenyl)sulfonyl)-9-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1yl)allyl)morpholine (3ja):

Prepared according to the general procedure **C** from **1j** (129 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **3ja** as a pale white solid (110 mg, 69% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 172-175 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.19 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.55 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.41 – 7.37 (m, 2H), 7.29 – 7.25 (m, 2H), 7.22 – 7.18 (m, 1H), 7.08 – 7.05 (m, 1H), 5.97 (s, 1H), 5.21 (s, 1H), 4.54 (s, 1H), 4.12 (dd, *J* = 14.6, 5.5 Hz, 1H), 3.73 – 3.61 (m, 4H), 3.52 (s,

3H), 3.48 - 3.43 (m, 1H), 3.22 (d, J = 13.2 Hz, 1H), 2.73 (d, J = 13.4 Hz, 1H), 2.62 - 2.52 (m, 4H), 2.26 - 2.23 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.2, 140.5, 137.2, 135.7, 133.5, 132.4, 132.1, 127.7, 126.5, 121.6, 120.3, 119.7, 119.1, 118.3, 109.0, 108.5, 67.4, 61.1, 54.2, 53.8, 39.4, 29.4, 20.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₉BrN₃O₃S 530.1108; found 530.1110.

4-(2-(9-methyl-2-((2,4,6-triisopropylphenyl)sulfonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1yl)allyl)morpholine (3ka):

Prepared according to the general procedure **C** from **1k** (144 mg, 0.3 mmol). Flash column chromatography (15% EtOAc in Hexane) afforded the desired product **3ka** as a white solid (102 mg, 59% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 196-198 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, *J* = 7.8 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.22 – 7.18 (m, 3H), 7.11 – 7.07 (m, 1H), 5.43 (s, 1H), 5.11 (s, 1H), 4.58 (s, 1H), 4.19 – 4.08 (m, 3H), 3.63 – 3.52 (m, 4H), 3.51 (s, 3H), 3.43 – 3.40 (m, 1H), 3.07 –

2.99 (m, 1H), 2.92 – 2.85 (m, 1H), 2.78 – 2.71 (m, 2H), 2.45 – 2.39 (m, 3H), 1.79 – 1.75 (m, 2H), 1.35 (d, J = 6.7 Hz, 6H), 1.23 (d, J = 6.9 Hz, 6H), 1.16 (d, J = 6.7 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.3, 151.6, 142.6, 137.3, 132.7, 132.1, 126.8, 124.2, 121.6, 120.8, 119.2, 118.5, 109.2, 108.9, 67.0, 61.6, 53.6, 52.8, 38.2, 34.3, 29.8, 29.1, 25.5, 24.8, 23.8, 23.7, 21.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₄₈N₃O₃S 578.3411; found 578.3414.

4-(2-(2-((5-chlorothiophen-2-yl)sulfonyl)-9-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1yl)allyl)morpholine (3la):

Prepared according to the general procedure **C** from **1I** (118 mg, 0.3 mmol). Flash column chromatography (25% EtOAc in Hexane) afforded the desired product **3Ia** as a colorless liquid (96 mg, 65% yield). Reaction time: 18 h. Reaction temperature: room temperature. ¹H **NMR (400 MHz, CDCl₃)**: δ 7.37 (d, *J* = 7.8 Hz, 1H), 7.27 (s, 1H), 7.22 – 7.19 (m, 1H), 7.15 (d, *J* = 3.8 Hz, 1H), 7.08 (d, *J* = 7.3 Hz, 1H), 6.62 (d, *J* = 4.0 Hz, 1H), 5.88 (s, 1H), 5.23 (s, 1H), 4.55 (s, 1H), 4.09 (dd, *J* = 14.8, 5.8 Hz, 1H), 3.80 – 3.74 (m, 4H), 3.53 (s, 3H), 3.49 – 3.46 (m, 1H), 2.82 (d, *J*

= 13.2 Hz, 1H), 2.71 – 2.55 (m, 7H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 143.0, 139.4, 137.2, 131.2, 130.9, 126.6, 126.3, 121.9, 119.5, 119.3, 118.3, 109.0, 108.3, 67.4, 60.9, 53.9, 53.8, 39.2, 29.4, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₇ClN₃O₃S₂ 492.1177; found 492.1173.

4-(2-(9-methyl-2-(methylsulfonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)allyl)morpholine (3ma):

Prepared according to the general procedure **C** from **1m** (87 mg, 0.3 mmol). Flash column chromatography (30 % EtOAc in Hexane) afforded the desired product **3ma** as a white solid (56 mg, 58% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 195-197 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.25 (t, *J* = 7.5 Hz, 1H), 7.14 (t, *J* = 7.3 Hz, 1H), 5.71 (s, 1H), 5.21 (s, 1H), 4.53 (s, 1H), 4.09 (dd, *J* = 14.9, 6.1 Hz, 1H), 3.80 – 3.69 (m, 4H), 3.54 (s, 3H), 3.49 – 3.44 (m, 1H), 3.04 – 2.96 (m, 1H), 2.82 – 2.77 (m, 3H), 2.74 (s,

3H), 2.66 – 2.55 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.2, 137.3, 131.8, 126.5, 122.2, 119.5, 119.0, 118.5, 109.2, 108.1, 67.4, 60.8, 53.9, 53.2, 40.1, 38.6, 29.5, 20.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₈N₃O₃S 390.1846; found 390.1843.

4-(2-(9-methyl-2-(phenylsulfonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)allyl)morpholine (3na):

Prepared according to the general procedure **C** from **1n** (106 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **3na** as a white solid (88 mg, 65% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 135-137 °C. ¹H **NMR (400 MHz, CDCl**₃): δ 7.69 (d, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 2H), 7.21 (d, *J* = 7.6 Hz, 2H), 7.19 – 7.15 (m, 1H), 7.02 (t, *J* = 7.3 Hz, 1H), 5.94 (s, 1H), 5.20 (s, 1H), 4.51 (s, 1H), 4.03 (dd, *J* = 14.8, 6.0 Hz, 1H), 3.83 – 3.71 (m, 4H), 3.51 (s, 3H), 3.46 – 3.38 (m, 1H), 2.82 (d, *J* =

13.3 Hz, 1H), 2.67 – 2.47 (m, 5H), 2.44 – 2.28 (m, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 143.3, 140.8, 137.1, 132.5, 131.7, 128.7, 126.9, 126.4, 121.7, 119.1, 118.2, 108.8, 108.3, 67.5, 61.0, 53.9, 53.6, 38.7, 29.3, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₃₀N₃O₃S 452.2002; found 452.2003.

4-(2-(6-methoxy-9-methyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)allyl)morpholine (3oa):

Prepared according to the general procedure **C** from **1o** (119 mg, 0.3 mmol). Flash column chromatography (35 % EtOAc in Hexane) afforded the desired product **3oa** as a white solid (89 mg, 60% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 150-152 °C. ¹H **NMR (400 MHz, CDCl₃)**: δ 7.55 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.7 Hz, 1H), 6.99 (d, *J* = 7.9 Hz, 2H), 6.83 (dd, *J* = 8.7, 1.9 Hz, 1H), 6.72 (s, 1H), 5.88 (s, 1H), 5.19 (s, 1H), 4.51 (s, 1H), 4.00 (dd, *J* = 14.7, 5.4 Hz, 1H), 3.81 (s, 3H), 3.74 – 3.66 (m, 4H), 3.48 (s, 3H), 3.43 – 3.35 (m, 1H), 2.80 (d, *J* = 13.3 Hz, 1H), 2.63 – 2.54 (m, 4H), 2.45 – 2.29 (m, 3H), 2.20 (s, 3H). ¹³C{¹H} NMR (100

MHz, CDCl₃): δ 153.9, 143.3, 137.7, 132.4, 132.4, 129.3, 127.5, 126.9, 126.7, 118.9, 111.3, 109.5, 107.8, 100.5, 67.4, 61.0, 56.1, 53.8, 53.6, 38.7, 29.4, 21.4, 19.5. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₃₄N₃O₄S 496.2265; found 496.2268.

4-(2-(6-chloro-9-methyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)allyl)morpholine (3pa):

Prepared according to the general procedure **C** from **1p** (120 mg, 0.3 mmol). Flash column chromatography (30 % EtOAc in Hexane) afforded the desired product **3pa** as a white solid (83 mg, 55% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 150-152 °C. ¹H **NMR (400 MHz, CDCl₃)**: δ 7.54 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 1.2 Hz, 1H), 7.15 – 7.09 (m, 2H), 6.99 (d, *J* = 8.1 Hz, 2H), 5.90 (s, 1H), 5.20 (s, 1H), 4.47 (s, 1H), 4.00 (dd, *J* = 14.9, 5.8 Hz, 1H), 3.81 – 3.69 (m, 4H), 3.50 (s, 3H), 3.42 – 3.34 (m, 1H), 2.81 (d, *J* = 13.3 Hz, 1H), 2.65 – 2.55 (m, 4H), 2.41 – 2.25 (m, 3H), 2.20 (s, 3H). ¹³C{¹H} **NMR (100 MHz, CDCl₃)**: δ 143.6, 143.2, 137.6,

135.5, 133.3, 129.3, 127.4, 126.9, 124.9, 121.8, 119.0, 117.7, 109.8, 108.0, 67.4, 61.0, 53.9, 53.5, 38.5, 29.5, 21.4, 19.3. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₃₁ClN₃O₃S 500.1769; found 500.1771.

4-(2-(9-ethyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)allyl)morpholine (3qa):

Prepared according to the general procedure **C** from **1q** (114 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **3qa** as a light yellow liquid (88 mg, 59% yield). Reaction time: 18 h. Reaction temperature: room temperature. ¹**H NMR (400 MHz, CDCl₃)**: δ 7.55 (d, *J* = 8.1 Hz, 2H), 7.27 – 7.24 (m, 2H), 7.15 (t, *J* = 7.4, Hz, 1H), 7.03 – 6.95 (m, 3H), 5.91 (s, 1H), 5.17 (s, 1H), 4.55 (s, 1H), 4.06 – 3.88 (m, 3H), 3.81 – 3.74 (m, 4H), 3.54 (d, *J* = 13.1 Hz, 1H), 3.46 – 3.38 (m, 1H), 2.79 (d, *J* = 13.1 Hz, 1H), 2.64 – 2.58 (m, 4H), 2.48 – 2.34 (m, 2H), 2.17 (s, 3H), 1.32 (t, *J* = 7.1, Hz, 3H). ¹³C{¹H} NMR

(125 MHz, CDCl₃): δ 143.6, 143.4, 137.7, 135.9, 131.0, 129.3, 126.8, 126.7, 121.5, 118.9, 118.3, 109.1, 108.3, 67.5, 60.9, 53.9, 53.4, 38.5, 37.7, 31.7, 21.4, 19.5, 15.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₃₄N₃O₃S 480.2315; found 480.2308.

4-(2-(9-allyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)allyl)morpholine (3ra):

Prepared according to the general procedure **C** from **1r** (118 mg, 0.3 mmol). Flash column chromatography (25% EtOAc in Hexane) afforded the desired product **3ra** as a white solid (91 mg, 62% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 157-159 °C. ¹H NMR (500 MHz, **CDCl₃**): δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 7.7 Hz, 1H), 7.21 (d, *J* = 7.9 Hz, 1H), 7.14 (t, *J* = 7.4 Hz, 1H), 7.04 – 6.98 (m, 3H), 5.86 – 5.83 (m, 2H), 5.18 (d, *J* = 10.3 Hz, 1H), 5.15 (s, 1H), 4.96 (d, *J* = 17.1 Hz, 1H), 4.60 (d, *J* = 16.1 Hz, 1H), 4.54 (s, 1H), 4.44 (dd, *J* = 16.9, 4.9 Hz, 1H), 4.07 (dd, *J* = 14.8, 5.7 Hz, 1H), 3.79 – 3.74 (m,

4H), 3.55 (d, J = 13.0 Hz, 1H), 3.45 – 3.39 (m, 1H), 2.78 (d, J = 13.0 Hz, 1H), 2.65 – 2.57 (m, 4H), 2.49 – 2.45 (m, 1H), 2.40 – 2.33 (m, 1H), 2.21 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 143.6, 143.4, 137.9, 136.6, 133.5, 131.4, 129.4, 127.0, 126.6, 121.7, 119.1, 118.8, 118.3, 117.0, 109.6, 108.8, 67.5, 61.0, 53.9, 53.4, 45.3, 38.6, 21.5, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₃₄N₃O₃S 492.2315; found 492.2300.

4-(2-(9-benzyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)allyl)morpholine (3sa):

Prepared according to the general procedure **C** from **1s** (133 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **3sa** as a yellow solid (86 mg, 53% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 90-92 °C. ¹H NMR (**500 MHz**, **CDCl₃**): δ 7.32 – 7.29 (m, 6H), 7.20 (d, *J* = 8.1 Hz, 1H), 7.14 – 7.11 (m, 3H), 7.03 (t, *J* = 7.3 Hz, 1H), 6.90 (d, *J* = 7.8 Hz, 2H), 5.83 (s, 1H), 5.26 (d, *J* = 16.5 Hz, 1H), 5.16 (s, 1H), 4.98 (d, *J* = 16.5 Hz, 1H), 4.57 (s, 1H), 4.07 (dd, *J* = 15.3, 5.9 Hz, 1H), 3.71 (brs, 4H), 3.51 (d, *J* = 13.1 Hz, 1H), 3.46 – 3.39 (m, 1H), 2.75 (d, *J* = 13.1 Hz, 1H),

2.60 – 2.50 (m, 4H), 2.48 – 2.33 (m, 2H), 2.21 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 143.4, 143.2, 137.9, 137.7, 136.8, 131.6, 129.4, 128.9, 127.8, 126.9, 126.8, 126.7, 122.0, 119.2, 119.0, 118.4, 109.8, 109.2, 67.4, 61.1, 54.0, 53.7, 46.6, 38.5, 21.5, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₂H₃₆N₃O₃S 542.2472; found 542.2449.

tert-butyl-1-(3-morpholinoprop-1-en-2-yl)-2-tosyl-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole-9-carboxylate (3ta):

Prepared according to the general procedure **C** from **1t** (91 mg, 0.2 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **3ta** as a white solid (40 mg, 36% yield). Reaction time: 18 h. Reaction temperature: room temperature. ¹H NMR (400 MHz, CDCl₃): δ 7.98 – 7.92 (m, 3H), 7.34 (d, *J* = 7.5 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.23 (t, *J* = 7.7 Hz, 1H), 6.99 (t, *J* = 7.5 Hz, 1H), 5.81 (q, *J* = 3.3 Hz, 1H), 5.65 (brs, 1H), 5.08 (s, 1H), 4.89 (s, 1H), 4.53 (s, 1H), 4.36 (d, *J* = 18.7 Hz, 1H), 3.94 (d, *J* = 18.6 Hz, 1H), 3.63 (t, *J* = 4.6 Hz, 4H), 2.87 (d, *J* = 13.7 Hz, 1H), 2.66 (d, *J* = 13.8 Hz, 1H), 2.45 (s, 3H), 2.34 – 2.45 (m, 4H), 1.64 (s, 9H).

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 152.3, 143.6, 133.8, 130.0, 129.9, 127.2, 123.1, 120.4, 116.0, 110.9, 82.2, 67.1, 62.3, 61.1, 53.7, 43.1, 28.6, 21.6. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₀H₃₈N₃O₅S 552.2527; found 552.2508.

1-(3-(azepan-1-yl)prop-1-en-2-yl)-9-methyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3ab):

Prepared according to the general procedure **C** from **1a** (110 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **3ab** as a white solid (75 mg, 52% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 148-150 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.2 Hz, 2H), 7.27 – 7.22 (m, 2H), 7.16 (td, *J* = 7.0, 1.0 Hz, 1H), 7.03 – 6.99 (m, 1H), 6.96 (d, *J* = 8.0 Hz, 2H), 5.89 (s, 1H), 5.19 (s, 1H), 4.45 (s, 1H), 3.99 (dd, *J* = 14.4, 5.3 Hz, 1H), 3.53 (s, 3H), 3.49 – 3.37 (m, 2H), 3.03 (d, *J* = 13.7 Hz, 1H), 2.79 – 2.69 (m, 4H), 2.48 – 2.37 (m, 3H), 2.17 (s, 3H),

1.74 – 1.65 (m, 7H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.2, 143.3, 137.9, 137.1, 132.2, 129.2, 127.0, 126.5, 121.5, 118.9, 118.1, 108.8, 108.2, 60.8, 56.3, 53.6, 38.7, 29.8, 29.5, 28.5, 27.2, 21.4, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₃₆N₃O₂S 478.2523; found 478.2525.

9-methyl-1-(3-(piperidin-1-yl)prop-1-en-2-yl)-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3ac):

Prepared according to the general procedure **C** from **1a** (110 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **3ac** as a white solid (76 mg, 55% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 152-154 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.28 – 7.22 (m, 2H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.03 – 6.97 (m, 3H), 5.89 (s, 1H), 5.16 (s, 1H), 4.47 (s, 1H), 3.99 (dd, *J* = 14.9, 5.4 Hz, 1H), 3.52 (s, 3H), 3.45 – 3.37 (m, 2H), 2.75 (d, *J* = 13.4 Hz, 1H), 2.56

-2.36 (m, 6H), 2.18 (s, 3H), 1.67 -1.47 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 144.2, 143.3, 137.9, 137.1, 132.2, 129.3, 127.0, 126.5, 121.5, 118.9, 118.3, 118.2, 108.8, 108.1, 61.4, 54.9, 53.6, 38.7, 31.7, 29.3, 26.4, 24.7, 22.8, 21.4, 19.6, 14.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₃₄N₃O₂S 464.2366; found 464.2356.

N,N-dibenzyl-2-(9-methyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)prop-2-en-1-amine (3af):

Prepared according to the general procedure **C** from **1a** (110 mg, 0.3 mmol). Flash column chromatography (8% EtOAc in Hexane) afforded the desired product **3af** as a white solid (104 mg, 61% yield). Reaction time: 24 h. Reaction temperature: room temperature. Melting point: 142-144 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 6.8 Hz, 2H), 7.39 (d, *J* = 6.9 Hz, 4H), 7.34 – 7.31 (m, 4H), 7.24 (d, *J* = 8.6 Hz, 3H), 7.20 – 7.13 (m, 2H), 7.02 – 6.99 (m, 1H), 6.94 (d, *J* = 7.7 Hz, 2H), 5.67 (s, 1H),

5.64 (s, 1H), 4.57 (s, 1H), 3.95 (d, J = 13.8 Hz, 1H), 3.78 (d, J = 13.9 Hz, 2H), 3.60 (d, J = 13.9 Hz, 2H), 3.48 (t, J = 15.4 Hz, 1H), 3.39 (s, 3H), 3.36 – 3.20 (m, 2H), 2.41 (d, J = 6.6 Hz, 2H), 2.15 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.6, 143.4, 139.1, 137.7, 137.1, 131.7, 129.2, 128.8, 128.4, 127.0, 126.9, 126.4, 121.6, 119.0, 118.2, 117.9, 108.8, 108.2, 57.7, 56.3, 54.7, 38.8, 29.5, 21.4, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₆H₃₈N₃O₂S 576.2679; found 576.2660.

N-benzyl-N-methyl-2-(9-methyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)prop-2-en-1-amine (3ag):

Prepared according to the general procedure **C** from **1a** (110 mg, 0.3 mmol). Flash column chromatography (15% EtOAc in Hexane) afforded the desired product **3ag** as a colorless liquid (110 mg, 73% yield). Reaction time: 18 h. Reaction temperature: room temperature. ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 2H), 7.27 (d, *J* = 7.8 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.02 (t, *J* = 7.3 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 2H), 5.95 (s, 1H), 5.32 (s, 1H), 4.53 (s, 1H), 4.04 – 4.00

(m, 1H), 3.66 (s, 2H), 3.61 (d, J = 13.5 Hz, 1H), 3.48 (s, 3H), 3.44 – 3.38 (m, 1H), 2.93 (d, J = 13.6 Hz, 1H), 2.49 – 2.43 (m, 2H), 2.21 (s, 3H), 2.17 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.6, 143.3, 139.5, 137.8, 137.1, 132.0, 129.3, 129.0, 128.4, 127.0, 126.5, 121.6, 119.0, 118.7, 118.2, 108.8, 108.3, 62.3, 60.6, 53.8, 41.8, 38.7, 29.5, 21.4, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₃₄N₃O₂S 500.2366; found 500.2367.

a) Acess to tetrahydroquinoline derivatives via aminomethylative cyclization

Synthesis of 4-(2-(6,7-dimethoxy-2-tosyl-1,2,3,4-tetrahydroisoquinolin-1-yl)allyl)morpholine (6):⁴

Prepared according to the general procedure **C** from **1v** (112 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **6** as a White solid (121 mg, 85% yield). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 109-111 °C. ¹H **NMR (500 MHz, CDCl₃)**: δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.28 (s, 1H), 6.76 (d, *J* = 8.6 Hz, 1H), 6.61 – 6.59 (m, 2H), 6.04 (s, 1H), 5.79 (s, 1H), 5.41 (s, 1H), 5.18 – 5.13 (m, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.71 – 3.62 (m, 4H), 3.41 – 3.34 (m, 1H), 3.23 – 3.17 (m, 1H), 2.92 – 2.86 (m, 1H), 2.79 – 2.73 (m, 1H), 2.49 (s,

1H), 2.41 (s, 3H), 2.37 – 2.28 (m, 2H), 1.97 – 1.94 (m, 2H). ${}^{13}C{}^{1H}$ NMR (125 MHz, CDCl₃): δ 149.1, 147.9, 144.1, 139.8, 137.8, 131.4, 129.9, 127.5, 120.7, 120.1, 112.2, 111.5, 87.9, 67.0, 61.2, 56.1, 56.0, 53.4, 45.9, 36.6, 21.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₃₃N₂O₅S 473.2105; found 473.2109.

Synthesis of 1-(3-(azepan-1-yl)prop-1-en-2-yl)-6,7-dimethoxy-2-tosyl-1,2,3,4-tetrahydroisoquinoline (7):

Prepared according to the general procedure **C** from **1v** (112 mg, 0.3 mmol). Flash column chromatography (30% EtOAc in Hexane) afforded the desired product **7** as a White solid (60 mg, 41% yield). Reaction time: 18 h. Reaction temperature: room temperature. ¹**H NMR (500 MHz, CDCl**₃): δ 7.83 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 1H), 6.75 (d, *J* = 8.6 Hz, 1H), 6.59 (s, 2H), 6.11 (s, 1H), 5.74 (s, 1H), 5.39 (s, 1H), 5.14 – 5.11 (m, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 3.33 – 3.27 (m, 1H), 3.21 – 3.14 (m, 1H), 2.87 – 2.87 (m, 1H), 2.77 – 2.72 (m, 1H), 2.67 (d, *J* = 13.0 Hz, 1H), 2.57 (d, *J* = 12.9 Hz, 1H), 2.49 – 2.46

(m, 2H), 2.41 (s, 3H), 2.23 – 2.21 (m, 2H), 1.60 – 1.57 (m, 7H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 149.1, 147.8, 144.0, 137.6, 131.5, 129.8, 127.6, 120.7, 119.0, 112.1, 111.5, 88.3, 61.3, 56.0, 56.0, 55.5, 45.8, 36.4, 28.2, 26.8, 21.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₃₇N₂O₄S 485.2469; found 485.2474.

Synthesis of N-benzyl-2-(6,7-dimethoxy-2-tosyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-N-methylprop-2-en-1-amine (8):

Prepared according to the general procedure **C** from **1v** (112 mg, 0.3 mmol). Flash column chromatography (10% EtOAc in Hexane) afforded the desired product **8** as a colorless liquid (132 mg, 87% yield). Reaction time: 18 h. Reaction temperature: room temperature. ¹**H NMR (500 MHz, CDCl₃)**: δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.34 – 7.31 (m, 2H), 7.29 – 7.24 (m, 2H), 7.16 (d, *J* = 7.9 Hz, 2H), 6.76 (d, *J* = 8.5 Hz, 1H), 6.61 (s, 2H), 6.22 (s, 1H), 5.82 (s, 1H), 5.50 (s, 1H), 5.24 - 5.22 (m, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 3.45 (d, J = 13.4 Hz, 1H), 3.40 - 3.34 (m, 1H), 3.25 - 3.19 (m, 1H), 3.12 (d, J = 13.4 Hz, 1H), 2.86 - 2.78 (m, 1H), 2.67 - 2.57 (m, 2H), 2.32 (s, 3H), 1.90 (s, 3H). ${}^{13}C{}^{1}H$ **NMR (125 MHz, CDCl**₃): δ 149.1, 147.8, 144.0, 140.9, 138.6, 137.5, 131.4, 129.9, 128.5, 127.5, 127.1, 120.7, 119.4, 112.1, 111.5, 88.3, 61.4, 60.9, 56.0, 55.9, 45.8, 41.5, 36.4, 21.5. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₃₅N₂O₄S 507.2312; found 507.2320.

6. Gram scale synthesis of 3aa

An oven-dried Schlenk/Seal tube was charged with with N,O-acetal **2a** (535 mg, 1.5 equiv) in **HFIP** (15 mL), and then allenamide **1a** (1.0 g, 2.72 mmol, 1.0 equiv) was added to the reaction mixture. The reaction was stirred at room temperature for 18 h, and the solvent was evaporated under reduced pressure. The reaction mixture was purified by flash chromatography (EtOAc in Hexane) on silica gel (100-200 mesh) to give **3aa** as a white solid (890 mg, 70% yield).

7. Synthetic transformations

(b) (i) Synthesis of 4-(2-(9-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)allyl)morpholine (9):³

An oven dried Schlenk tube was charged with **3aa** (93 mg, 0.2 mmol), Mg turnings (267 mg, 11 mmol, 55.0 equiv) and MeOH (4.0 mL) under nitrogen. The reaction mixture was ultrasonicated for 5 minutes, and then stirred at room temperature for overnight. The white suspension was treated with Et_3N and filtered through a short pad of Celite, washed with Et_2O and MeOH. The filtrate was concentrated in vacuum and the residue was purified by flash column chromatography eluted with 5% MeOH in EtOAc and Et_3N to give the desired product **9** (51 mg, 82% yield) as a pale yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 8.2 Hz, 1H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.13 (t, *J* = 7.2 Hz, 1H), 5.23 (s, 1H), 4.75 (s, 1H), 4.69 (s, 1H), 3.76 (brs, 4H), 3.49 (s, 3H), 3.26 (dd, *J* = 12.8 Hz, 1H), 3.11 – 3.09 (m, 2H), 3.01 (d, *J* = 12.9 Hz, 1H), 2.88 – 2.73 (m, 3H), 2.57 – 2.51 (m, 4H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 143.7, 137.0, 134.8, 126.9, 121.2, 118.9, 118.8, 118.2, 109.3, 108.8, 67.2, 63.5, 54.7, 54.0, 38.8, 29.5, 22.6. HRMS (ESI-TOF) m/z: [M +

(b)(ii) Synthesis of 9-methyl-1-(prop-1-en-2-yl)-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (10):³

An oven dried Schlenk tube was charged with **3aa** (93 mg, 0.2 mmol) in EtOH (4 mL), and was added 10% Pd-C (0.4 equiv), and the mixture was stirred at room temperature for 48 h under H₂ atmosphere (H₂ balloon). The catalyst was removed by filtration through Celite pad, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (eluted with 10% EtOAc in hexane) furnishing **10** (40 mg, 53 % yield) as a white solid. Melting point: 152-154 °C. ¹H NMR (**400 MHz, CDCl₃**): δ 7.55 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 1H), 7.24 (d, *J* = 4.0 Hz, 1H), 7.19 – 7.15 (m, 1H), 7.04 – 6.97 (m, 3H), 5.51 (s, 1H), 5.09 (s, 1H), 4.37 (s, 1H), 3.99 (dd, *J* = 14.9, 5.8 Hz, 1H), 3.54 (s, 3H), 3.41 – 3.33 (m, 1H), 2.48 – 2.33 (m, 2H), 2.18 (s, 3H), 2.01 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.3, 142.9, 137.8, 137.1, 132.0, 129.3, 126.9, 126.4, 121.6, 119.0, 118.3, 117.1, 108.8, 107.9, 56.9, 38.8, 29.6, 21.4, 20.8, 19.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₅N₂O₂S 381.1631; found 381.1631.

8. Derivatives of biologically important molecules

C) Synthesis of (1R,4R)-7,7-dimethyl-1-(((9-methyl-1-(3-morpholinoprop-1-en-2-yl)-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl)sulfonyl)methyl)bicyclo[2.2.1]heptan-2-one (11):

Prepared according to the general procedure **C** from **1u** (127 mg, 0.3 mmol). Flash column chromatography (35% EtOAc in Hexane) afforded the desired product **11** as a white solid (94 mg, 60% yield, 2.6:1 dr). Reaction time: 18 h. Reaction temperature: room temperature. Melting point: 168-170 °C. **1H NMR (500 MHz, CDCl₃)**: δ 7.52 (t, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 7.4 Hz, 1H), 7.22 (d, *J* = 7.1 Hz, 1H), 7.12 (q, *J* = 6.7 Hz, 1H), 5.78 (d, *J* = 47.1 Hz, 1H), 5.21 (s, 1H), 4.52 (s, 1H), 4.14 – 4.06 (m, 1H), 3.77 – 3.72 (m, 4H), 3.57 (d, *J* = 16.9 Hz, 3H), 3.51 – 3.43 (m, 2H), 3.27 (dd, *J* = 56.4 Hz, 14.5 Hz, 1H), 3.15 – 2.95 (m, 1H), 2.84 – 2.79 (m, 2H), 2.73 (t, *J* = 13.0 Hz, 1H), 2.62 – 2.55 (m, 4H), 2.44 – 2.28 (m, 2H), 2.04 – 1.99 (m, 2H), 1.89 (q, *J* = 9.4 Hz, 1H), 2.44 – 2.28 (m, 2H), 2.04 – 1.99 (m, 2H), 1.89 (q, *J* = 9.4 Hz, 1H), 2.44 – 2.28 (m, 2H), 2.04 – 1.99 (m, 2H), 1.89 (q, *J* = 9.4 Hz, 1H), 3.57 (m, 2H), 3.57 (m

1H), 1.75 –1.67 (m, 1H), 1.40 – 1.26 (m, 2H), 1.05 (d, J = 8.3 Hz, 3H), 0.75 (s , 1H), 0.65 (s, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 214.7, 143.3, 137.3, 132.1, 126.6, 121.9, 119.4, 119.0, 118.6, 118.4, 109.0, 108.0, 67.4, 61.0, 58.7, 53.9, 53.2, 49.6, 47.7, 43.1, 42.6, 38.6, 29.5, 26.9, 26.1, 25.4, 20.8, 20.1, 19.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₄₀N₃O₄S 526.2740; found 526.2715.

9. Control Experiment

An oven-dried Schlenk tube was charged with N,O-acetal **2a** (1.5 equiv) in HFIP (3 mL), and then compound **4a** (0.3 mmol, 1.0 equiv) was added to the reaction mixture. The reaction was stirred at room temperature (rt) for 18 h. **3aa** was not detected and **4a** was recovered.

10. X-Ray Data Collection and Check CIF Report

Single crystal X-ray data for compound **3aa (CCDC 2390767)** was collected on the Rigaku XtaLAB Synergy-S single crystal X-ray diffractometer equipped with a HyPix-6000HE Hybrid Photon Counting (HPC)detector and dual Mo and Cu microfocus sealed X-ray source with kappa goiniometer at 293 (2) K. Data collection cell determination, and data reduction was performed using the CrysAlisPro¹⁶ software. Structure solution and refinement were performed by using SHELX-97¹⁷. Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms was carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbon atoms were generated with idealized geometries and isotropically refined using a riding model.

Datablock xrf27062024c_auto - ellipsoid plot

S19

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) xrf27062024c_auto

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: xrf27062024c_auto

Bond precision:	C-C = 0.0027 A	Wavelength=1.54184			
Cell:	a=12.6627(2) alpha=90	b=15.3055(2) beta=101.373(2)	c=12.8279(2) gamma=90		
Temperature:	292 K		2		
	Calculated	Reported			
Volume	2437.34(7)	2437.34(6))		
Space group	P 21/c	P 1 21/c	1		
Hall group	-P 2ybc	-P 2ybc			
Moiety formula	C26 H31 N3 O3 S	C26 H31 N	3 O3 S		
Sum formula	C26 H31 N3 O3 S	C26 H31 N	3 O3 S		
Mr	465.60	465.60			
Dx,g cm-3	1.269	1.269			
Z	4	4			
Mu (mm-1)	1.437	1.437			
F000	992.0	992.0			
F000′	996.02				
h,k,lmax	16,19,16	16,19,16			
Nref	5216	4961			
Tmin, Tmax	0.886,0.917	0.612,1.0	00		
Tmin'	0.818				
Correction metho AbsCorr = MULTI-	od= # Reported T I -SCAN	Limits: Tmin=0.612 Tm	ax=1.000		
Data completene:	ss= 0.951	Theta(max) = 78.005	5		
R(reflections)=	0.0432(4136)		<pre>wR2(reflections) =</pre>		
. 1 0.00	. , , ,	21.2	0.1302(4961)		
S = 1.060	Npar=	313			

11. References

(a) Mondal, A.; Chowdhury, C. J. Org. Chem. 2021, 86, 3, 3810–3825. (b) Chaudhary, D.; Kuram, M.
 R. J. Org. Chem. 2024, 89, 11783–11788. (c). Wang, Y.; Zhang, P.; Di, X.; Dai, Q.; Zhang, Z.-M.; Zhang,
 J. Angew. Chem. Int. Ed. 2017, 56, 15905–15909. (d). Zhao, L.-P.; Li, P.-J.; Wang, L.; Tang, Y. Angew.
 Chem. Int. Ed. 2022, 134, e202207360. (e). Pradhan, T. R.; Kim, H. W.; Park, J. K. Angew. Chem. Int.
 Ed. 2018, 57, 9930–9935. (f). Kumar, D.; Chaudhary, D.; Ishu, K.; Yadav, S.; Maurya, N. K.; Kant, R.;
 Kuram, M. R. Org. Biomol. Chem. 2022, 20, 8610–8614. (g). Kumar, D.; Kuram, M. R. Adv. Syn. Cat.
 2023, 365, 3935–3941.

(a) Y. Chi, E. P. English, W. C. Pomerantz, W. S. Horne, L. A. Joyce, L. R. Alexander, W. S. Fleming, E.
 A. Hopkins, S. H. Gellman, *J. Am. Chem. Soc.* 2007, *129*, 6050. (b) A. Martinez-Cuezva, C. Lopez-Leonardo, D. Bautista, M. Alajarin, J. Berna, *J. Am. Chem. Soc.* 2016, *138*, 8726. (c) Yu, J.; Chen, L.;
 Sun, J. Org. Lett. 2019, *21*, 1664–1667. (d) Sakai, N.; Shimamura, K.; Ikeda, R.; Konakahara, T. *J. Org. Chem.* 2010, *75*, 3923–3926.

3. Chaudhary, D.; Kuram, M. R. J. Org. Chem. 2024, 89, 11783–11788.

4. (a) Perego, L. A.; Blieck, R.; Groué, A.; Monnier, F.; Taillefer, M.; Ciofini, I.; Grimaud, L. ACS Catal.
2017, 7, 4253–4264. (b) Manoni, E.; Gualandi, A.; Mengozzi, L.; Bandini, M.; Cozzi, P. G. RSC Adv.
2015, 5, 10546–10550.

12. NMR Spectra

Figure S-2: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound **3aa**

Figure S-4: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 3ba

Figure S-6: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3ca

Figure S-7: ¹⁹F NMR (376 MHz, CDCl₃) spectrum of compound 3ca

Figure S-8: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3da

Figure S-9: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3da

Figure S-10: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ea

Figure S-11: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3ea

Figure S-12: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3fa

Figure S-13: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3fa

Figure S-14: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ga

Figure S-15: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 3ga

Figure S-16: ¹⁹F NMR (376 MHz, CDCl₃) spectrum of compound 3ga

Figure S-18: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3ha

Figure S-20: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3ia

Figure S-22: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3ja

Figure S-24: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3ka

Figure S-26: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 3la

Figure S-28: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3ma

70

60 50 40

30

20 10

0 ppm

80

Figure S-30: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 3na

200 190 180 170 160 150 140 130 120 110 100 90

Figure S-31: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 30a

Figure S-32: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 30a

Figure S-34: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3pa

70

60 50

40 30

20 10

0 ppm

90 80

Figure S-36: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 3qa

200 190 180 170 160 150 140 130 120 110 100

Figure S-37: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3ra

Figure S-38: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3ra

Figure S-39: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3sa

Figure S-40: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 3sa

Figure S-41: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ta

Figure S-42: ${}^{13}C{}^{1H}$ NMR (125 MHz, CDCl₃) spectrum of compound **3ta**

Figure S-44: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3ab

Figure S-46: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 3ac

Figure S-48: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 3af

Figure S-50: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 3ag

200 190 180 170 160 150 140 130 120 110 100 90 80 0 ppm Figure S-52: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 6

Figure S-54: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 7

Figure S-55: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 8

Figure S-56: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 8

Figure S-57: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 9

Figure S-58: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 9

Figure S-59: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 10

Figure S-60: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 10

Figure S-62: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 11

Figure S-63: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4a