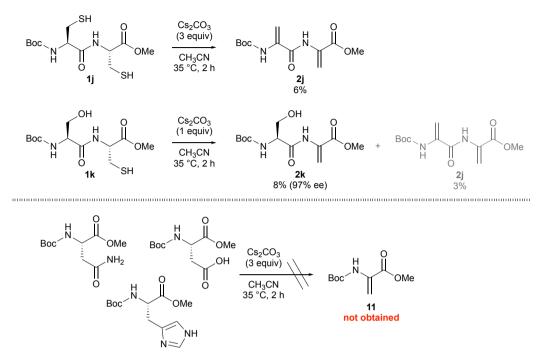
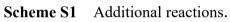
Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Direct and chemoselective transformation of cysteine to dehydroalanine on peptides


Taiki Mori,^a Kazuki Sakata ^b and Seiji Shirakawa*^a

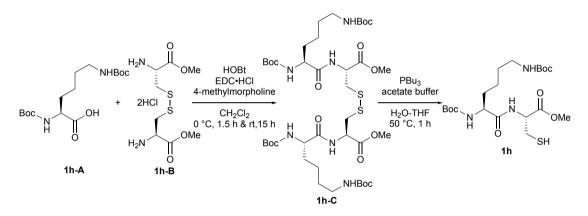

^aInstitute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan. ^bSpiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.

E-mail: seijishirakawa@nagasaki-u.ac.jp

Table of Contents

Scheme S1 General Information Experimental Section		S-2 S-3 S-4			
			1.	Synthesis of substrates	S-4
			2.	General methods for the preparation of dehydroamino acid derivatives	S-6
3.	Preparation and transformations of dehydroalanine derivative 11	S-11			
References		S-14			
NMR Charts HPLC Charts		S-15 S-36			

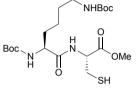
General Information


¹H and ¹³C NMR spectra were measured on a JEOL JNM-ECZ 400R NMR instrument (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR). Tetramethylsilane (TMS) served as the internal standard (0 ppm) for ¹H NMR, and solvent peaks served as the internal standard (77.0 ppm for CDCl₃; 49.0 ppm for CD₃OD; 39.5 ppm for DMSO-d₆) for ¹³C NMR. The following abbreviations were used to express the multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet; br = broad. High-resolution mass spectra (HRMS) were measured on a JEOL JMS-700N. Infrared spectra (IR) were measured on a JASCO FT/IR-4200 spectrometer. Optical rotations were measured on a JASCO P-2100 polarimeter. High performance liquid chromatography (HPLC) was performed on Shimadzu LC-20AT and SPD-20A instruments using Daicel Chiralpak AD-3, ID-3, or IE-3 columns (4.6 mm × 250 mm). All reactions were monitored by thinlayer chromatography using Merck precoated TLC plates (silica gel 60GF-254, 0.25 mm), with visualization by the use of UV lamp (254 nm) or dyes. The products were purified by flash column chromatography on silica gel.

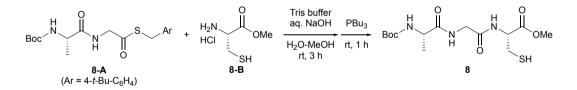
Experimental Section

1. Preparation of substrates

Dipeptide substrates [1 (except 1h), 3, and 5] and amnio acid-derived substrates [6 and 10] are known and commercially available compounds.


Dipeptide substrate **1h** and tripeptide substrate **8** were prepared according to the general synthetic methods for peptides as shown in below.

To a solution of Boc-protected lysine derivative **1h-A** (0.35 g, 1.0 mmol) in CH_2Cl_2 (5 mL) was added 1-hydroxybenzotriazole (HOBt, 0.14 g, 1.0 mmol) and 1-(3dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC•HCl, 0.19 g, 1.0 mmol) at 0 °C. The reaction mixture was stirred for 1.5 hours at 0 °C. After 1.5 hours, 4methylmorpholine (0.12 g, 1.2 mmol) and cystine dimethyl ester dihydrochloride **1h-B** (0.15 g, 0.45 mmol) were added to the reaction mixture at 0 °C, and the resulting mixture was stirred for 1.5 hours at 0 °C. The mixture was then warmed to room temperature and stirred for additional 15 hours. After 15 hours, H₂O (5 mL) was added to the reaction mixture at room temperature. After evaporation to remove CH_2Cl_2 , the reaction products were extracted three times with ethyl acetate (5 mL × 3). The combined ethyl acetate extracts were washed with saturated aqueous NaHCO₃ for three times (5 mL × 3) and brine (5 mL × 1). The resulting ethyl acetate solution was dried over Na₂SO₄. Following filtration to remove Na₂SO₄, the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 10:1–1:2 as the eluent) to afford disulfide **1h-C** (0.35 g, 0.38 mmol).


To a solution of disulfide **1h-C** (0.28 g, 0.30 mmol) in THF (2 mL) was added 0.1M acetate (AcOH•AcONa) buffer solution [pH 4.7] (1 mL) and tributylphosphine (67

mg, 0.33 mmol) at room temperature. The reaction mixture was warmed to 50 °C and stirred for 1 hour at 50 °C. After 1 hour, the reaction mixture was cooled to room temperature. H₂O (5 mL) was added to the resulting solution at room temperature and the reaction products were extracted three times with ethyl acetate (5 mL × 3). The combined ethyl acetate extracts were dried over Na₂SO₄. Following filtration to remove Na₂SO₄, the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 10:1-1:2 as the eluent) to afford dipeptide **1h** in 91% yield (0.25 g, 0.54 mmol, white solid).

h: $[\alpha]^{27}_{D}$ +1.2 (c = 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, J = 6.9 Hz, 1H), 5.19 (br, 1H), 4.87–4.83 (m, 1H), 4.65 (br, 1H), 4.12–4.06 (br m, 1H), 3.79 (s, 3H), 3.15–3.10 (br m, 2H), 3.03–2.99 (m, 2H), 1.88–1.38 (m, 7H), 1.45 (s, 9H), 1.44 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 170.1, 155.9, 155.6, 79.5, 78.6, 54.1, 53.6, 52.4, 39.6, 31.4, 29.3, 28.1, 28.0, 26.2, 22.2; IR (neat): 3312, 2979, 2933, 1693, 1507, 1366, 1248, 1166, 907, 727 cm⁻¹; HRMS (FAB) calcd for C₂₀H₃₈N₃O₇S: 464.2430 ([M+H]⁺), found 464.2431.

A solution of peptide 8-A (0.57 g, 1.4 mmol) in methanol (5 mL) was added to a mixture of cysteine methyl ester hydrochloride 8-B (0.70 g, 4.1 mmol), H₂O (3 mL), 1M TRIS buffer solution [pH 8.0] (1 mL), and 5M aqueous NaOH (1 mL) at room temperature. The mixture was stirred for 3 hours at room temperature. After 3 hours, tributylphosphine (0.34 g, 1.7 mmol) was added to the reaction mixture at room temperature. The resulting mixture was stirred for 1 hour at room temperature. After 1 hour, the reaction products were extracted three times with ethyl acetate (5 mL × 3). The combined ethyl acetate extracts were washed with saturated aqueous NH₄Cl (10 mL × 1) and brine (10 mL × 1). The resulting ethyl acetate solution was dried over Na₂SO₄. Following filtration to remove Na₂SO₄, the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 2:1–1:10 as the eluent) to afford tripeptide 8 in 75% yield (0.37 g, 1.0 mmol, white solid).

Boc $\stackrel{\text{H}}{\longrightarrow}$ $\stackrel{\text{O}}{\longrightarrow}$ $\stackrel{\text{H}}{\longrightarrow}$ $\stackrel{\text{O}}{\longrightarrow}$ $\stackrel{\text{O}}{\longrightarrow}$ 16.7 Hz, 1H), 3.87 (d, J = 16.9 Hz, 1H), 3.74 (s, 3H), 2.95 (dd, J = 14.0, 4.8 Hz, 1H), 2.89 (dd, J = 14.0, 6.8 Hz, 1H), 1.44 (s, 9H), 1.33

(d, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 176.2, 171.7, 171.3, 157.6, 80.5, 55.9, 53.0, 51.6, 43.4, 28.7, 26.5, 18.1; IR (neat): 3301, 2979, 1660, 1522, 1249, 1167 cm^{-1} ; HRMS (EI) calcd for $C_{14}H_{25}N_3O_6S$: 363.1464 ([M]⁺), found 363.1471.

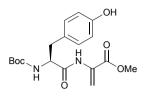
2. General methods for the preparation of dehydroamino acid derivatives [2, 4, 7, and 9] (Schemes 2 and 3)

A solution of dipeptide 1 [or 3, or 5, or threonine derivative 6, or tripeptide 8] (0.30 mmol) in acetonitrile (3.0 mL) was warmed to 35 °C and stirred for 5 min. Cesium carbonate (98 mg, 0.30 mmol, 1 equiv) was then added to the warmed solution. The reaction mixture was stirred for 2 hours at 35 °C under open air conditions. After 2 hours, H₂O (5 mL) was added to the reaction mixture. The reaction products were initially extracted three times with ethyl acetate (5 mL \times 3). After acidifying the aqueous phase with 1N HCl, further extraction was performed three times with ethyl acetate (5 mL \times 3). The combined ethyl acetate extracts were dried over Na₂SO₄. Following filtration to remove Na₂SO₄, the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate as the eluent) to afford dehydroamino acid derivative 2 [or 4, or 7, or 9].

hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm;

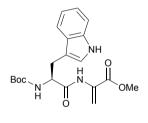
retention time: 16.8 min (minor) and 22.6 min (major). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (br, 1H), 6.61 (s, 1H), 5.91 (d, J = 1.4 Hz, 1H), 4.94 (br, 1H), 4.26 (br, 1H), 3.85 (s, 3H), 1.46 (s, 9H), 1.41 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 164.2, 155.4, 130.8, 109.2, 80.5, 52.9, 50.9, 28.2, 17.9; IR (neat): 3332, 2979, 1683, 1515, 1442, 1323, 1248, 1162, 733 cm⁻¹; HRMS (EI) calcd for C₁₂H₂₀N₂O₅: 272.1372 ([M]⁺), found 272.1372.

 $\begin{array}{c} \textbf{2b:}^{1,3,4} 57\% \text{ yield (44 mg, 0.17 mmol, colorless viscous oil).} ^{1}\text{H} \\ \overset{\text{Boc}}{\underset{\text{H}}{\longrightarrow}} & \overset{\text{H}}{\underset{\text{OMe}}{\longrightarrow}} & \overset{\text{O}}{\underset{\text{MMR}}{\longrightarrow}} & \text{NMR (400 MHz, CDCl_3) } \delta 8.31 (br, 1H), 6.62 (s, 1H), 5.92 (d, J) \end{array}$ Iz, 1H), 5.13 (br, 1H), 3.90 (d, J = 5.7 Hz, 2H), 3.85 (s, 3H),

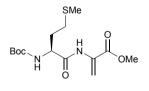

1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 164.2, 156.0, 130.5, 109.3, 80.5, 52.9, 45.1, 28.2; IR (neat): 3379, 2979, 1684, 1514, 1327, 1250, 1202, 1162 cm⁻¹; HRMS (EI) calcd for C₁₁H₁₈N₂O₅: 258.1216 ([M]⁺), found 258.1216.

hexane/2-propanol = 5:1, flow rate = 0.5 mL/min, 254 nm;

retention time: ~35 min [not detected] (minor) and 38.3 min (major). ¹H NMR (400 MHz, $CDCl_3$) δ 8.19 (br, 1H), 6.63 (s, 1H), 5.92 (d, J = 1.4 Hz, 1H), 5.04 (br d, J = 7.1 Hz, 1H), 4.08–4.01 (br m, 1H), 3.85 (s, 3H), 2.26–2.18 (m, 1H), 1.46 (s, 9H), 0.99 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 164.3, 155.8, 130.5, 109.3, 80.2, 60.6, 53.0, 30.7, 28.2, 19.3, 17.5; IR (neat): 3313, 2971, 1726, 1675, 1522, 1366, 1322, 1204, 1168 cm⁻¹; HRMS (EI) calcd for C₁₄H₂₄N₂O₅: 300.1685 ([M]⁺), found 300.1685.


hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm;

retention time: 21.0 min (minor) and 23.9 min (major). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (br, 1H), 7.33–7.29 (m, 2H), 7.26–7.18 (m, 3H), 6.62 (s, 1H), 5.90 (d, J = 1.1 Hz, 1H), 4.96 (br, 1H), 4.44 (br, 1H), 3.80 (s, 3H), 3.16–3.08 (m, 2H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 164.0, 155.3, 136.2, 130.5, 129.1, 128.7, 127.0, 109.3, 80.5, 56.5, 52.9, 38.1, 28.2; IR (neat): 3313, 2979, 1723, 1677, 1521, 1500, 1440, 1367, 1324, 1251, 1203, 1165 cm⁻¹; HRMS (EI) calcd for $C_{18}H_{24}N_2O_5$: 348.1685 ([M]⁺), found 348.1683.


2e:^{5,7} 45% yield (49 mg, 0.14 mmol, white solid). $[\alpha]^{21}_{D}$ -4.1 (*c* = 0.99, CH₃OH, 96% ee); HPLC analysis: Daicel Chiralpak AD-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 16.7 min (minor) and 19.8 min (major). ¹H NMR

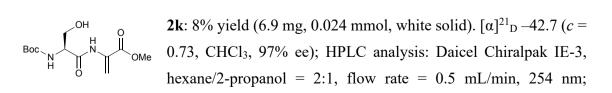
(400 MHz, DMSO-d₆) δ 9.28 (s, 1H), 9.19 (s, 1H), 7.17 (d, *J* = 8.2 Hz, 1H), 7.08 (d, *J* = 8.2 Hz, 2H), 6.65 (d, *J* = 8.5 Hz, 2H), 6.26 (s, 1H), 5.72 (s, 1H), 4.27–4.21 (m, 1H), 3.77 (s, 3H), 2.89 (dd, *J* = 13.8, 4.0 Hz, 1H), 2.64 (dd, *J* = 13.6, 10.6 Hz, 1H), 1.32 (s, 9H); ¹³C NMR (100 MHz, DMSO-d₆) δ 171.8, 163.8, 155.8, 155.5, 132.3, 130.2, 127.9, 114.8, 109.1, 78.4, 56.7, 52.8, 35.9, 28.1; IR (neat): 3340, 2979, 2930, 1701, 1515, 1365, 1222, 1203, 1163, 733 cm⁻¹; HRMS (FAB) calcd for C₁₈H₂₅N₂O₆: 365.1713 ([M+H]⁺), found 365.1699.

2f:^{5,7} 62% yield (72 mg, 0.19 mmol, white solid). $[\alpha]^{22}_{D}$ -8.0 (*c* = 1.2, CHCl₃, >99% ee); HPLC analysis: Daicel Chiralpak IE-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 16.6 min (minor) and 19.0 min (major). ¹H NMR (400 MHz, CDCl₃) δ 8.16–8.09 (br m, 2H), 7.61 (d, *J* = 8.0 Hz,

1H), 7.36 (dt, J = 8.0, 1.0 Hz, 1H), 7.20 (td, J = 8.0, 1.0 Hz, 1H), 7.12 (td, J = 8.0, 1.0 Hz, 1H), 7.06 (d, J = 2.3 Hz, 1H), 6.61 (s, 1H), 5.87 (s, 1H), 5.12 (br, 1H), 4.54 (br, 1H), 3.73 (s, 3H), 3.40–3.21 (m, 2H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 163.8, 155.5, 136.2, 130.6, 127.3, 123.1, 122.2, 119.7, 118.7, 111.2, 110.0, 109.2, 80.4, 55.9, 52.8, 28.2, 27.9; IR (neat): 3385, 2980, 2954, 2930, 1682, 1518, 1440, 1327, 1202, 1162, 907, 728 cm⁻¹; HRMS (FAB) calcd for C₂₀H₂₅N₃O₅: 387.1794 ([M]⁺), found 387.1795.

2g: 57% yield (57 mg, 0.17 mmol, white solid). [α]²¹_D -26.5 (c = 1.2, CHCl₃, 95% ee); HPLC analysis: Daicel Chiralpak IE-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 26.1 min (major) and 36.5 min (minor). ¹H NMR

(400 MHz, CDCl₃) δ 8.47 (br, 1H), 6.60 (s, 1H), 5.93 (d, J = 1.4 Hz, 1H), 5.18 (br d, J = 6.2 Hz, 1H), 4.42–4.33 (br m, 1H), 3.85 (s, 3H), 2.64–2.52 (m, 2H), 2.20–2.12 (m, 1H), 2.12 (s, 3H), 2.00–1.91 (m, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 164.1, 155.5, 130.7, 109.5, 80.5, 54.2, 53.0, 31.3, 30.2, 28.2, 15.2; IR (neat): 3313, 2979, 2919, 1678, 1515, 1440, 1322, 1248, 1202, 1161, 732 cm⁻¹; HRMS (FAB) calcd for


 $C_{14}H_{25}N_2O_5S$: 333.1484 ([M+H]⁺), found 333.1484.

2h: 56% yield (72 mg, 0.17 mmol, white solid). $[\alpha]^{27}D - 31.7$ (c = 0.90, CHCl₃, >99% ee); HPLC analysis: Daicel Chiralpak IE-3, hexane/2-propanol = 1:1, flow rate = 0.5 mL/min, 254 nm; retention time: 18.2 min (major) and ~29 min [not detected] (minor). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (br, 1H), 6.60 (s, 1H), 5.91 (d, J = 1.1 Hz, 1H), 5.20 (br, 1H), 4.60 (br, 1H), 4.15 (br, 1H), 3.84 (s, 3H), 3.15–3.10 (m, 2H), 1.94–1.25 (m, 6H), 1.46 (s, 9H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 164.0, 156.0, 155.7, 130.6, 109.1, 79.9, 78.7, 55.1, 52.7, 39.5, 31.1, 29.5, 28.2, 28.0, 22.3; IR (neat): 3384, 3331, 2979, 2933, 1683, 1509, 1366, 1249, 1163, 909, 729 cm⁻¹; HRMS (FAB) calcd for C₂₀H₃₆N₃O₇: 430.2553 ([M+H]⁺), found 430.2542.

2i:⁸ 54% yield (48 mg, 0.16 mmol, white solid). $[\alpha]^{24}_D$ –92.2 (c = 1.1, CHCl₃, >99% ee); HPLC analysis: Daicel Chiralpak ID-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 13.6

min (minor) and 20.6 min (major). ¹H NMR (400 MHz, CDCl₃) δ 9.20–8.15 (br m, 1H), 6.60 (s, 1H), 5.90 (s, 1H), 4.50–4.15 (br m, 1H), 3.84 (s, 3H), 3.60–3.25 (br m, 2H), 2.45–1.86 (m, 4H), 1.54–1.39 (br m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6 & 171.0, 164.2, 155.8 & 154.3, 131.2 & 130.6, 108.9, 80.7, 61.9 & 60.8, 52.8, 47.1, 30.8 & 29.6, 28.4 & 28.2, 24.4 & 23.8; IR (neat): 3388, 2977, 1690, 1518, 1390, 1366, 1319, 1201, 1159, 1120 cm⁻¹; HRMS (EI) calcd for C₁₄H₂₂N₂O₅: 298.1529 ([M]⁺), found 298.1532.

 $\begin{array}{c} \textbf{2j: 6\% yield (4.9 mg, 0.018 mmol, white solid). ^{1}H NMR (400 \\ MHz, CDCl_3) \delta 8.47 (br, 1H), 6.62 (s, 1H), 6.12 (br, 1H), 5.97 (d, \\ J = 1.4 Hz, 1H), 5.21 - 5.20 (m, 1H), 3.88 (s, 3H), 1.49 (s, 9H); ^{13}C \\ NMR (100 MHz, CDCl_3) \delta 164.3, 162.3, 152.6, 134.8, 130.5, 109.4, 98.7, 80.8, 53.2, \\ 28.2; IR (neat): 3406, 2979, 1678, 1495, 1340, 1161 cm^{-1}; HRMS (EI) calcd for \\ C_{12}H_{18}N_2O_5: 270.1216 ([M]^+), found 270.1216. \end{array}$

S-9

retention time: 17.1 min (minor) and 32.3 min (major). ¹H NMR (400 MHz, CDCl₃) δ 8.89 (br, 1H), 6.58 (s, 1H), 5.95 (d, *J* = 1.6 Hz, 1H), 5.55 (br, 1H), 4.32–4.17 (br m, 2H), 3.85 (s, 3H), 3.75–3.68 (m, 1H), 2.47–2.44 (m, 1H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 164.0, 156.1, 130.9, 109.7, 80.9, 62.5, 55.7, 53.0, 28.2; IR (neat): 3384, 2979, 2927, 1721, 1683, 1522, 1367, 1329, 1165 cm⁻¹; HRMS (FAB) calcd for C₁₂H₂₁N₂O₆: 289.1400 ([M+H]⁺), found 289.1401.

Boc N H Composed of the solid of the solid

retention time: 11.4 min (major) and 12.5 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 6.66 (d, J = 7.3 Hz, 1H), 6.04 (s, 1H), 5.12 (t, J = 1.7 Hz, 1H), 4.65–4.58 (m, 1H), 3.79 (s, 3H), 1.48 (s, 9H), 1.46 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 163.5, 152.7, 134.4, 98.1, 80.5, 52.7, 48.6, 28.2, 18.3; IR (neat): 3386, 2981, 1731, 1660, 1656, 1627, 1493, 1456, 1367, 1243, 1214, 1155, 1071 cm⁻¹; HRMS (EI) calcd for C₁₂H₂₀N₂O₅: 272.1372 ([M]⁺), found 272.1372.

 $\begin{array}{c} (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ (Z)-7:^{1.6} 28\% \text{ yield (18 mg, 0.084 mmol, white solid).} ^{1$

Boc $\stackrel{H}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$

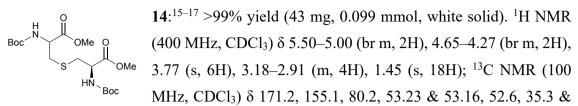
mL/min, 254 nm; retention time: 30.0 min (major) and ~33 min [not detected] (minor).¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 6.89 (br, 1H), 6.57 (s, 1H), 5.92 (d, J = 1.4 Hz, 1H), 5.00 (br, 1H), 4.29–4.18 (br m, 1H), 4.08 (dd, J = 16.9, 5.7 Hz, 1H), 4.02 (dd, J = 16.9, 5.5 Hz, 1H), 3.85 (s, 3H), 1.45 (s, 9H), 1.40 (d, J = 4.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 167.7, 164.2, 155.6, 130.7, 109.7, 80.2, 53.0, 50.0, 43.9, 28.2, 18.4; IR (neat): 3310, 2979, 1666, 1516, 1442, 1366, 1323, 1248, 1203, 1164, 731 cm⁻¹;

HRMS (EI) calcd for C₁₄H₂₃N₃O₆: 329.1587 ([M]⁺), found 329.1586.

3. Preparation and transformations of dehydroalanine derivative 11 (Scheme 4)

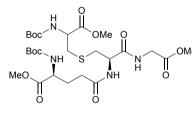
A solution of cysteine derivative **10** (0.71 g, 3.0 mmol) in acetonitrile (30 mL) was warmed to 35 °C and stirred for 5 min. Cesium carbonate (0.98 g, 3.0 mmol, 1 equiv) was then added to the warmed solution. The reaction mixture was stirred for 2 hours at 35 °C under open air conditions. After 2 hours, H₂O (50 mL) was added to the reaction mixture. The reaction products were extracted three times with ethyl acetate (50 mL × 3). The combined ethyl acetate extracts were dried over Na₂SO₄. Following filtration to remove Na₂SO₄, the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 100:1–20:1 as the eluent) to afford dehydroalanine derivative **11** in 58% yield (0.35 g, 1.7 mmol, colorless viscous oil).

 $\begin{array}{c} 11:^{1-4, 58\% \text{ yield } (0.35 \text{ g}, 1.7 \text{ mmol, colorless viscous oil}). {}^{1}\text{H NMR } (400 \text{ MHz, CDCl}_3) \ \delta \ 7.02 \ (\text{br, 1H}), \ 6.16 \ (\text{s, 1H}), \ 5.73 \ (\text{d}, J = 1.6 \text{ Hz, 1H}), \ 3.83 \ (\text{s, 3H}), \ 1.49 \ (\text{s, 9H}); {}^{13}\text{C NMR } (100 \text{ MHz, CDCl}_3) \ \delta \ 164.4, \ 152.5, \ 131.2, \ 105.1, \ 80.7, \ 52.8, \ 28.2; \ \text{IR } (\text{neat}): \ 3422, \ 2980, \ 1715, \ 1508, \ 1325, \ 1155, \ 1066 \ \text{cm}^{-1}; \ \text{HRMS} \ (\text{EI) calcd for } \ C_9H_{15}\text{NO}_4: \ 201.1001 \ ([M]^+), \ \text{found } \ 201.1001. \end{array}$


To a solution of dehydroalanine derivative **11** (20 mg, 0.10 mmol) in acetone (0.50 mL) was added 0.1M phosphate buffer solution [pH 8.0] (0.50 mL) at room temperature. Phenylselenol (47 mg, 0.30 mmol, 3 equiv) was then added to the solution of **11**. The reaction mixture was warmed to 40 °C and stirred for 24 hours at 40 °C. After 24 hours, saturated aqueous NH₄Cl (5 mL) was added to the reaction mixture. The reaction products were extracted three times with ethyl acetate (5 mL × 3). The combined ethyl acetate extracts were dried over Na₂SO₄. Following filtration to remove Na₂SO₄, the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 50:1-10:1 as the eluent) to afford selenocysteine derivative **12** in 89% yield (32 mg, 0.089 mmol, white solid).

12:^{10–13} 89% yield (32 mg, 0.089 mmol, white solid). ¹H NMR (400 MHz, **CDCl**₃) δ 7.57–7.52 (m, 2H), 7.28–7.24 (m, 3H), 5.35 (br d, *J* = 7.5 Hz, 1H), 4.69–4.64 (br m, 1H), 3.49 (s, 3H), 3.33 (d, *J* = 4.8 Hz, 2H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 154.9, 133.7, 129.1, 128.8, 127.5, 80.0, 53.2, 52.2, 30.6, 28.2; IR (neat): 3363, 2978, 1746, 1713, 1501, 1366, 1215, 1165, 739 cm⁻¹; HRMS (FAB) calcd for C₁₅H₂₁NO₄Se: 359.0636 ([M]⁺), found 359.0636.

To a solution of dehydroalanine derivative **11** (20 mg, 0.10 mmol) in acetone (0.50 mL) was added 0.1M phosphate buffer solution [pH 8.0] (0.50 mL) at room temperature. Propargylamine (6.1 mg, 0.11 mmol, 1.1 equiv) was then added to the solution of **11**. The reaction mixture was warmed to 35 °C and stirred for 48 hours at 35 °C. After 48 hours, the reaction mixture was concentrated. The resulting residue was purified by flash column chromatography on silica gel (dichloromethane/methanol = 100:1–50:1 as the eluent) to afford amino acid product **13** in 55% yield (14 mg, 0.055 mmol, white solid).

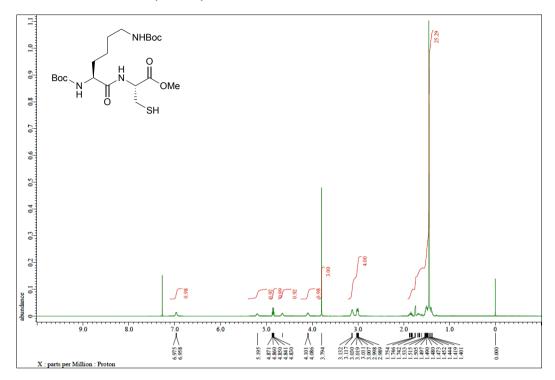

13:¹⁴ 55% yield (14 mg, 0.055 mmol, white solid). ¹H NMR (400 MHz, CDCl₃) δ 5.40 (br, 1H), 4.40 (br, 1H), 3.77 (s, 3H), 3.47–3.37 (m, 2H), 3.10 (dd, *J* = 11.9, 4.8 Hz, 1H), 3.02 (dd, *J* = 12.3, 4.8 Hz, 1H), 2.22 (t, *J* = 2.4 Hz, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 155.5, 81.5, 80.0, 71.7, 53.5, 52.5, 49.5, 38.1, 28.3; IR (neat): 3300, 2979, 2932, 1743, 1706, 1366, 1250, 1207, 1162 cm⁻¹; HRMS (EI) calcd for C₁₂H₂₁N₂O₄: 257.1501 ([M+H]⁺), found 257.1503.

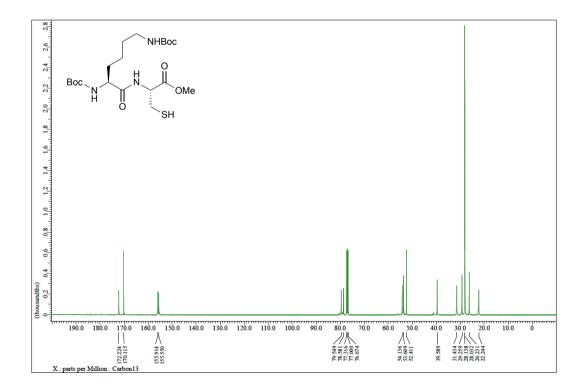
To a solution of dehydroalanine derivative **11** (20 mg, 0.10 mmol) in methanol (1.0 mL) was added cysteine derivative **10** (35 mg, 0.15 mmol) and triethylamine (15 mg, 0.15 mmol) at room temperature. The reaction mixture was stirred for 2 hours at room temperature. After 2 hours, the reaction mixture was concentrated. The resulting residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 20:1-1:1 as the eluent) to afford lanthionine derivative **14** in >99% yield (43 mg, 0.099 mmol, white solid).

35.2, 28.2; IR (neat): 3372, 2978, 1700, 1501, 1366, 1248, 1213, 1160, 730 cm⁻¹; HRMS (EI) calcd for $C_{18}H_{33}N_2O_8S$: 437.1958 ([M+H]⁺), found 437.1958.

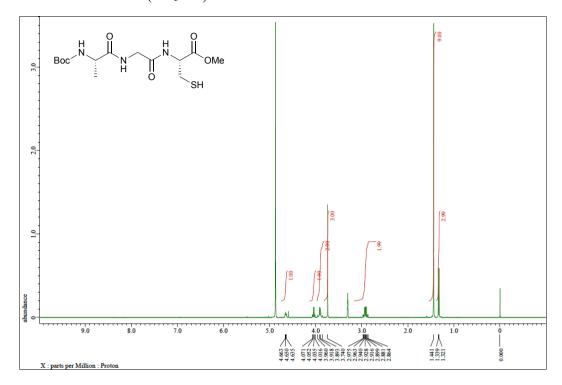
To a solution of dehydroalanine derivative 11 (20 mg, 0.10 mmol) in acetone (0.50 mL) was added 0.1M phosphate buffer solution [pH 8.0] (0.50 mL) at room temperature. Glutathione derivative 15 (48 mg, 0.11 mmol, 1.1 equiv) was then added to the solution of 11. The reaction mixture was warmed to 35 °C and stirred for 7 hours at 35 °C. After 7 hours, H₂O (2 mL) was added to the reaction mixture. The reaction products were extracted three times with ethyl acetate (5 mL \times 3). The combined ethyl acetate extracts were dried over Na₂SO₄. Following filtration to remove Na₂SO₄, the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (dichloromethane/methanol = 100:1-25:1 as the eluent) to afford peptide 16 in 87% yield (56 mg, 0.087 mmol, white solid).

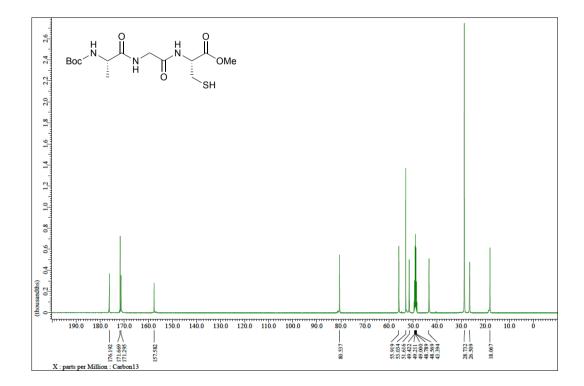
 $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & &$ 3.79-3.75 (m, 9H), 3.09-2.84 (m, 4H), 2.42-2.33 (m,

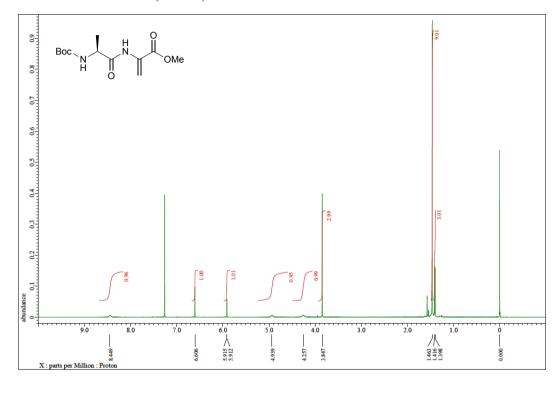

2H), 2.28–2.15 (br m, 1H), 2.05–1.90 (br m, 1H), 1.45–1.44 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 172.89, 172.86, 172.3, 172.2, 171.6, 171.4, 170.7, 170.51, 170.45, 169.94, 169.89, 155.7, 155.4, 80.4, 80.1, 53.7, 53.2, 52.72, 52.67, 52.5, 52.4, 52.3, 52.0, 51.9, 41.25, 41.18, 35.6, 35.3, 34.6, 34.4, 32.1, 31.9, 28.5, 28.3; IR (neat): 3320, 2979, 2955, 1745, 1703, 1653, 1520, 1213, 1167 cm⁻¹; HRMS (EI) calcd for C₂₆H₄₅N₄O₁₂S: 637.2755 ([M+H]⁺), found 637.2756.

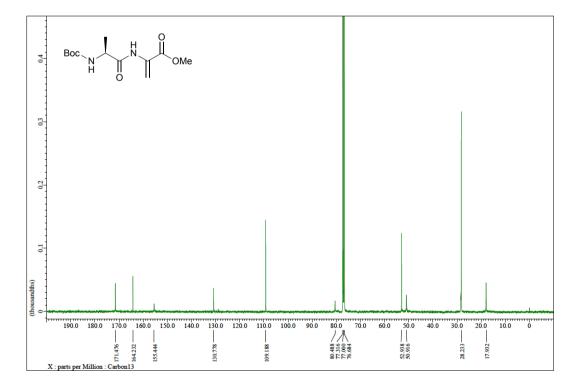

References

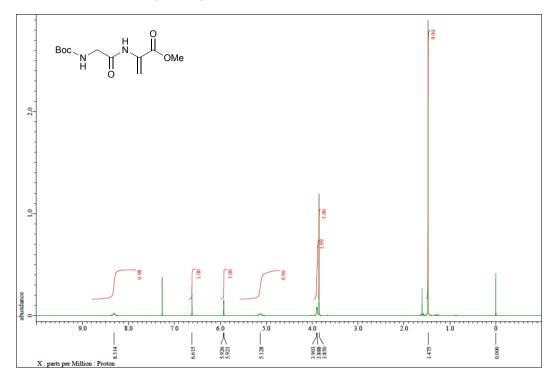
- 1. P. M. T. Ferreira, L. S. Monteiro, G. Pereira, L. Ribeiro, J. Sacramento and L. Silva, *Eur. J. Org. Chem.* 2007, 5934–5949.
- J. M. Chalker, S. B. Gunnoo, O. Boutureira, S. C. Gerstberger, M. Fernández-González, G. J. L. Bernardes, L. Griffin, H. Hailu, C. J. Schofield and B. G. Davis, *Chem. Sci.*, 2011, 2, 1666–1676.
- 3. K. M. Reddy and G. Mugesh, RSC Adv., 2019, 9, 34–43.
- 4. H. Wang, J. Zhang and M. Xian, J. Am. Chem. Soc., 2009, 131, 13238–13239.
- C. J. Chapman, J. D. Hargrave, G. Bish and C. G. Frost, *Tetrahedron*, 2008, 64, 9528– 9539.
- 6. R. Ramesh, K. De and S. Chandrasekaran, *Tetrahedron*, 2007, 63, 10534–10542.
- C. J. Chapman, A. Matsuno, C. G. Frost and M. C. Willis, *Chem. Commun.*, 2007, 3903–3905.
- L. Gentilucci, L. Cerisoli, R. De Marco and A. Tolomelli, *Tetrahedron Lett.*, 2010, 51, 2576–2579.
- 9. P. J. Knerr and W. A. van der Donk, J. Am. Chem. Soc., 2012, 134, 7648–7651.
- A. L. Braga, P. H. Schneider, M. W. Paixão, A. M. Deobald, C. Peppe and D. P. Bottega, J. Org. Chem., 2006, 71, 4305–4307.
- 11. Y. Fang, T. Rogge, L. Ackermann, S.-Y. Wang and S.-J. Ji, *Nat. Commun.*, 2018, **9**, 2240.
- 12. K. M. Reddy and G. Mugesh, Chem. Eur. J., 2019, 25, 8875-8883.
- 13. Z. Yu, Y. Kong, B. Li, S. Su, J. Rao, Y. Gao, T. Tu, H. Chen and K. Liao, *Chem. Commun.*, 2023, **59**, 2935–2938.
- 14. V. S. Sudhir, N. Y. P. Kumar, R. B. N. Baig and S. Chandrasekaran, J. Org. Chem., 2009, 74, 7588–7591.
- 15. C. Dugave and A. Ménez, Tetrahedron: Asymmetry, 1997, 8, 1453-1465.
- 16. A. P. Galow, F. Rominger and M. Mastalerz, *Eur. J. Org. Chem.*, 2023, 26, e202201383.
- 17. J. M. Hammond, M. G. Gardiner and L. R. Malins, Org. Lett., 2023, 25, 3157-3162.

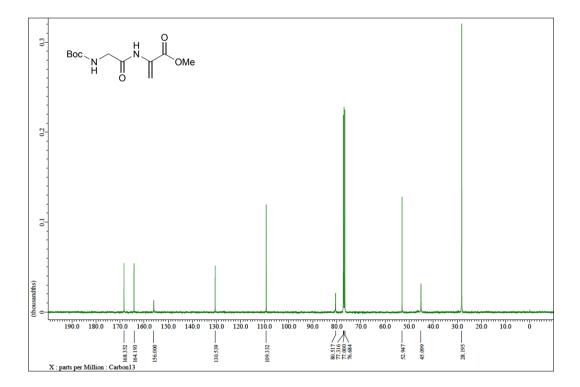

NMR Charts

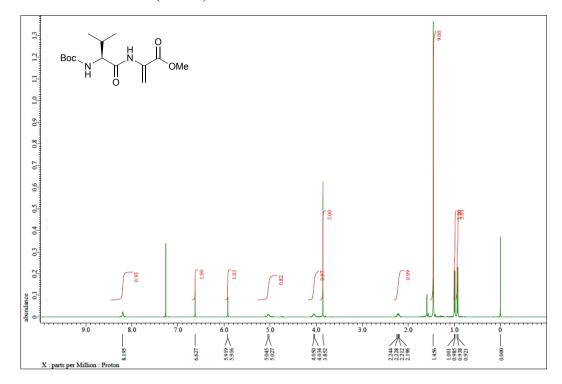

1h: ¹H and ¹³C NMR (CDCl₃)

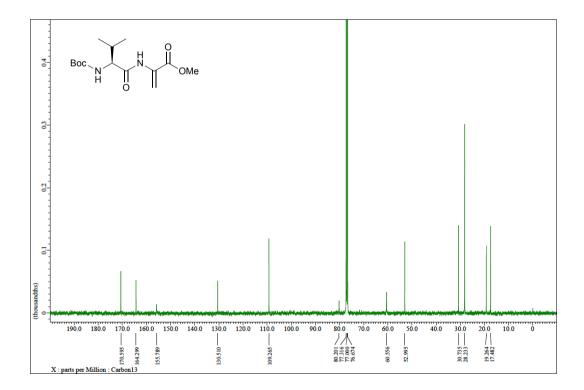


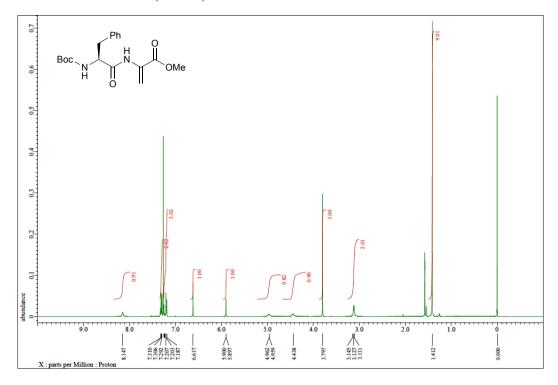

8: ¹H and ¹³C NMR (CD₃OD)

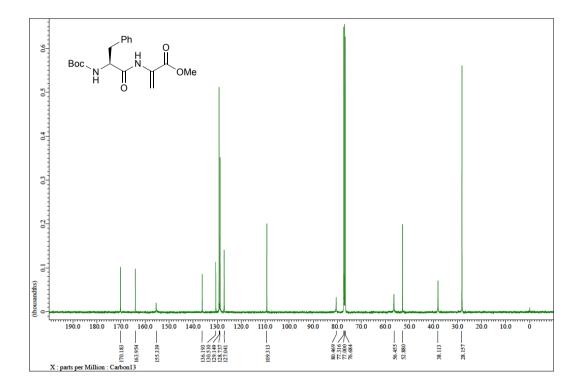


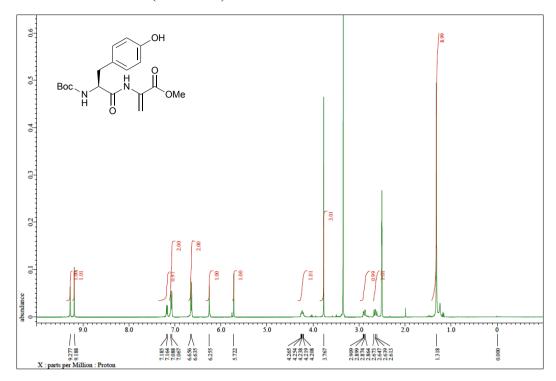

2a: ¹H and ¹³C NMR (CDCl₃)

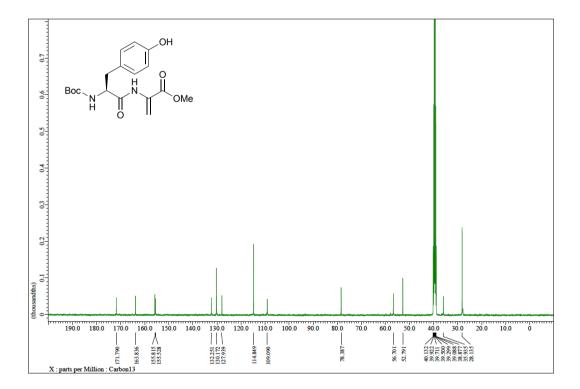


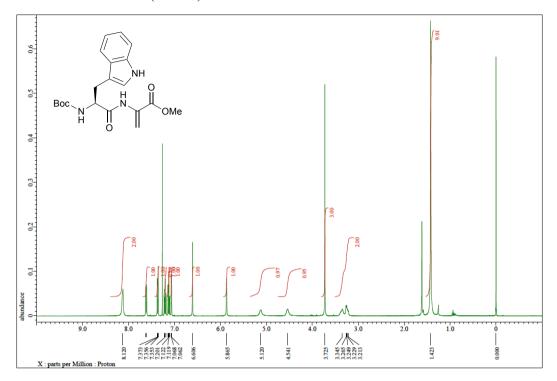

2b: ¹H and ¹³C NMR (CDCl₃)

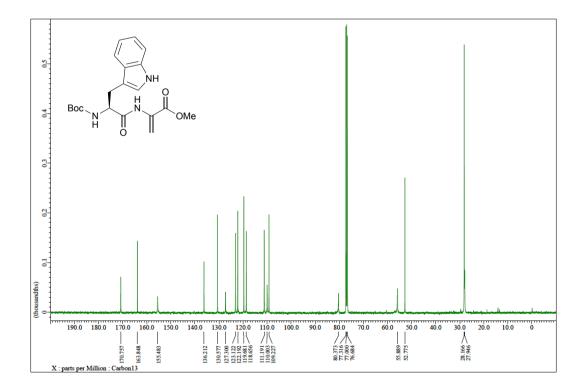


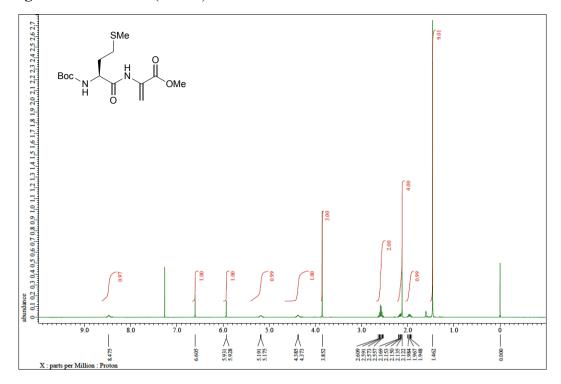

2c: ¹H and ¹³C NMR (CDCl₃)

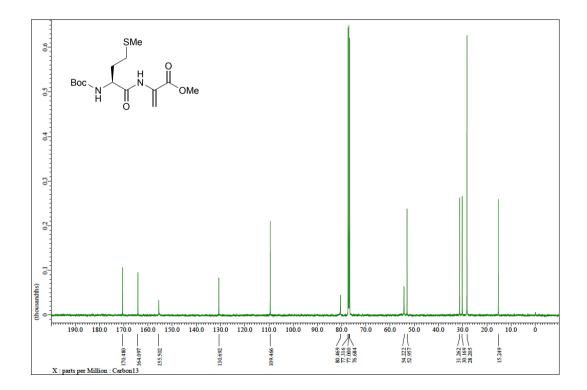


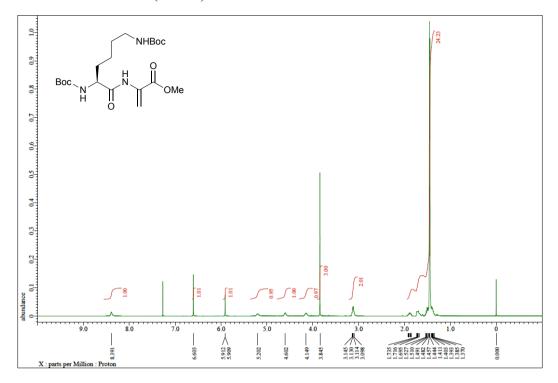

2d: ¹H and ¹³C NMR (CDCl₃)

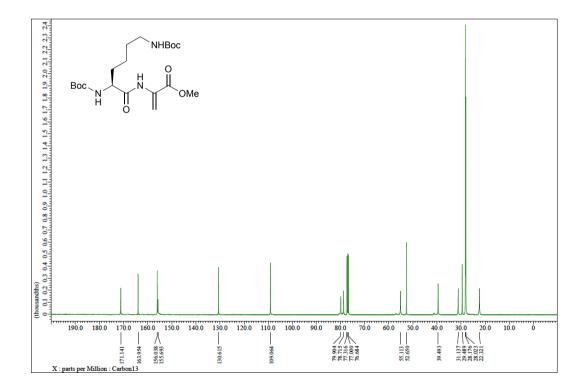


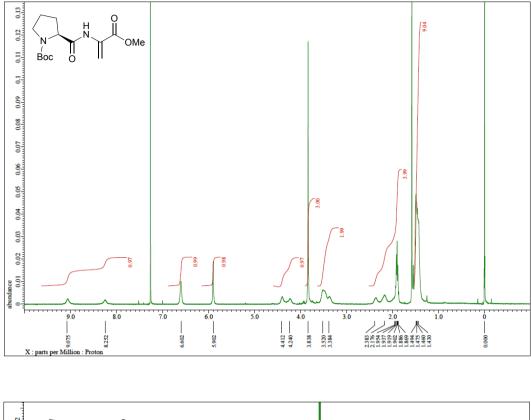

2e: ¹H and ¹³C NMR (DMSO-d₆)

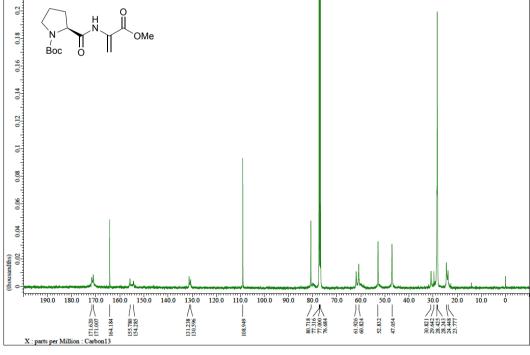


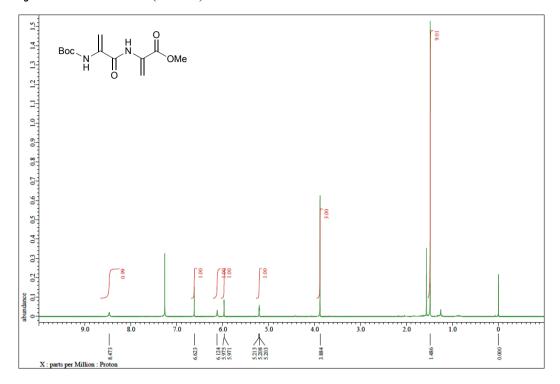

2f: ¹H and ¹³C NMR (CDCl₃)

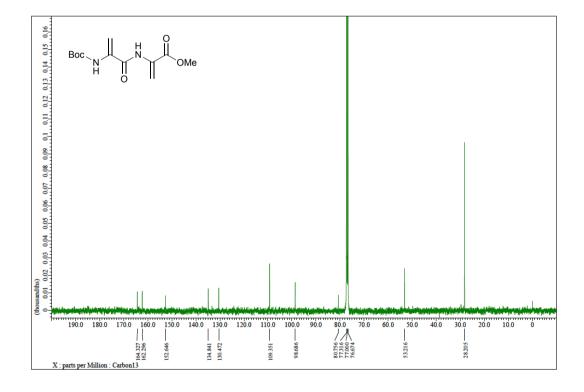


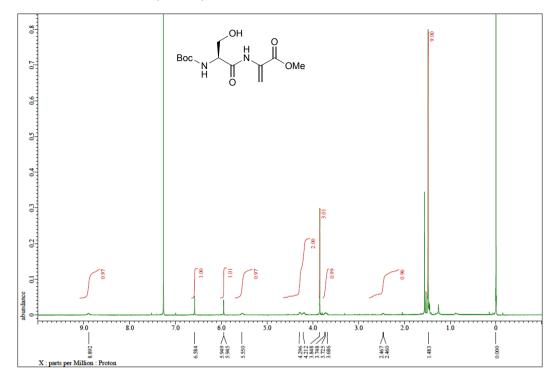

2g: ¹H and ¹³C NMR (CDCl₃)

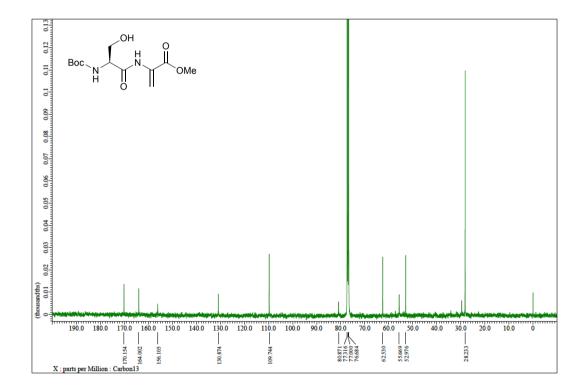


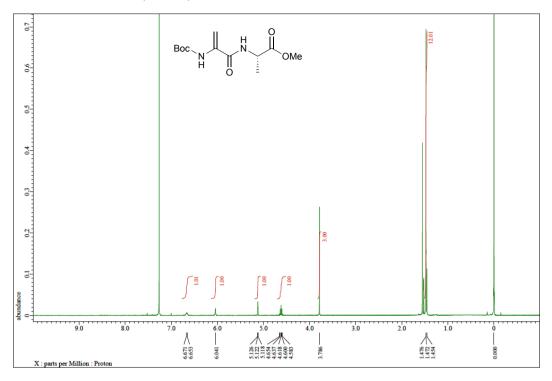

2h: ¹H and ¹³C NMR (CDCl₃)

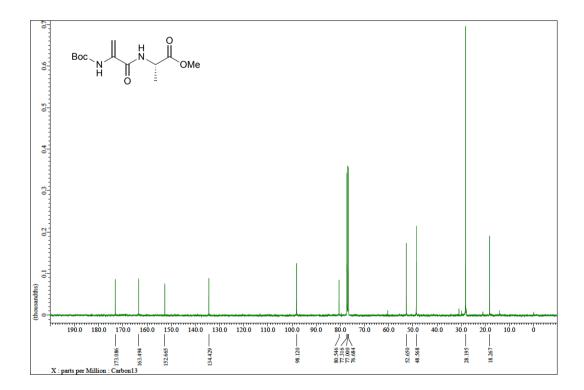


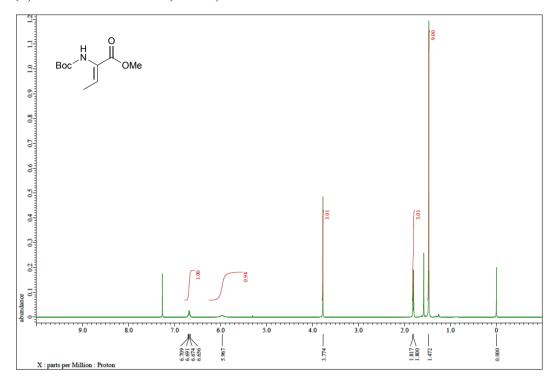

2i: ¹H and ¹³C NMR (CDCl₃)

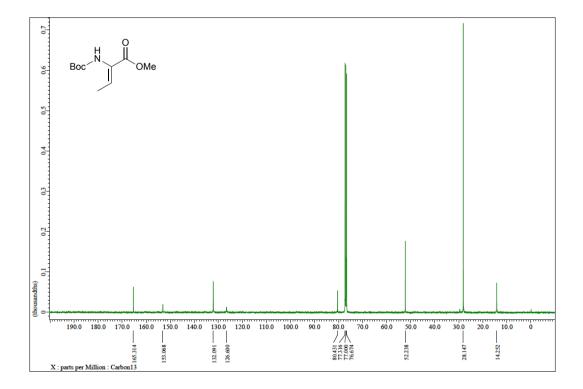


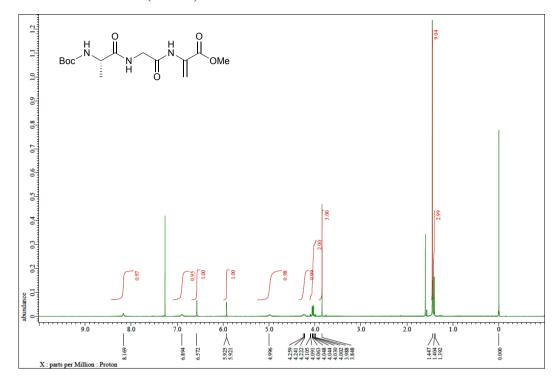

2j: ¹H and ¹³C NMR (CDCl₃)

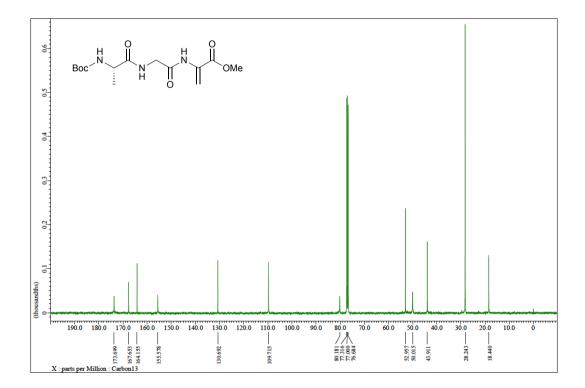


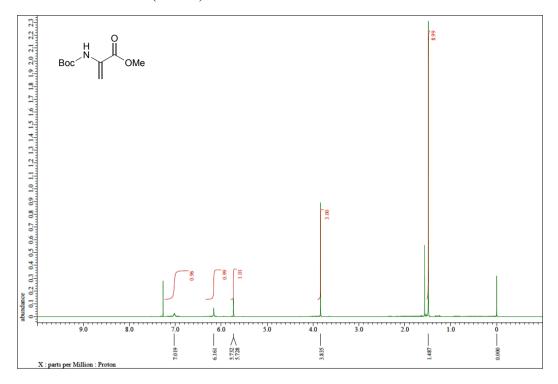

2k: ¹H and ¹³C NMR (CDCl₃)

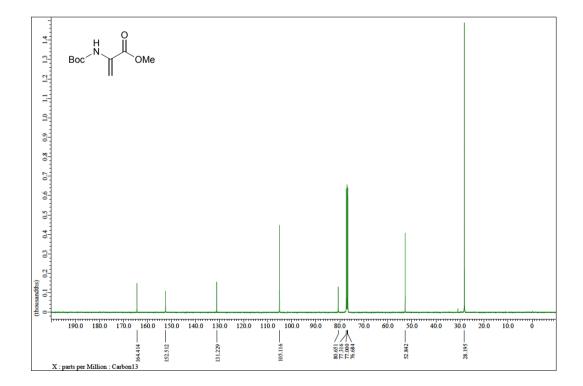


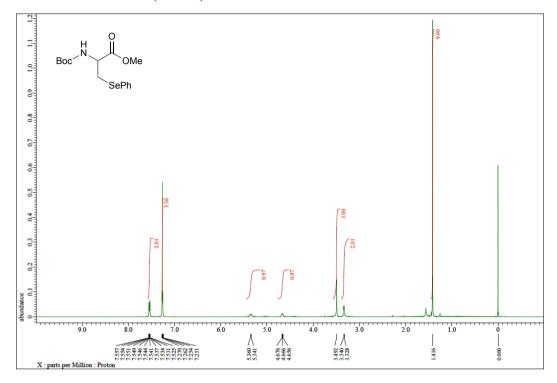

4: ¹H and ¹³C NMR (CDCl₃)

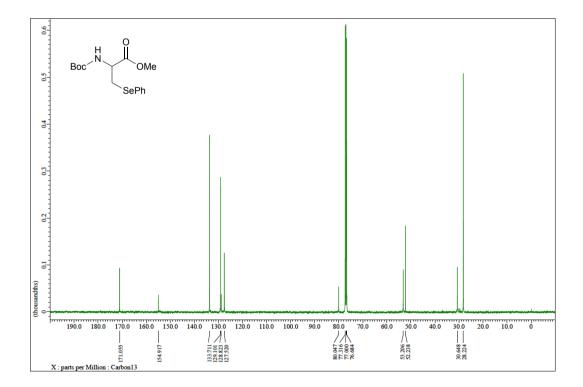


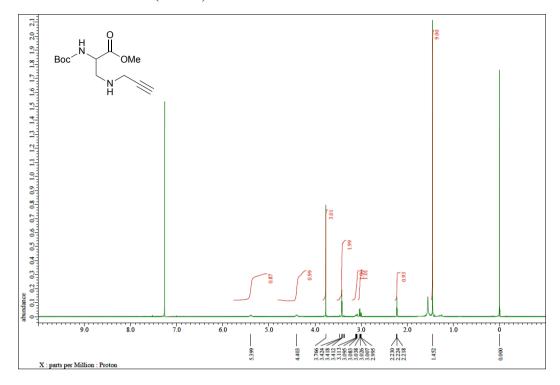

(Z)-7: 1 H and 13 C NMR (CDCl₃)

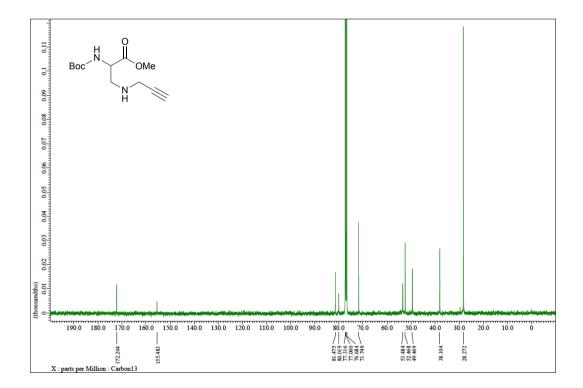


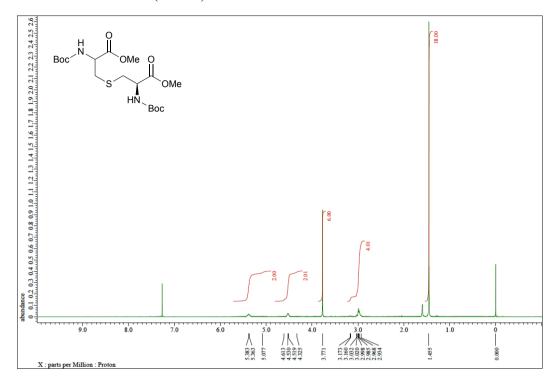

9: ¹H and ¹³C NMR (CDCl₃)

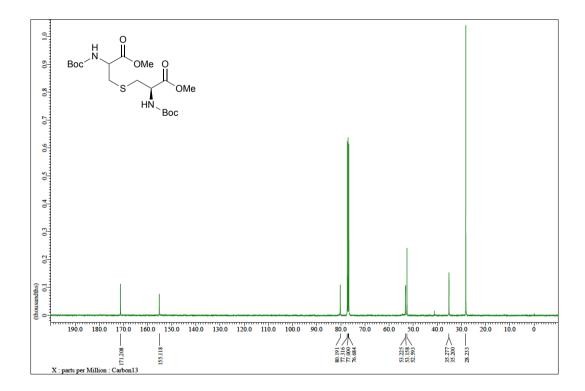


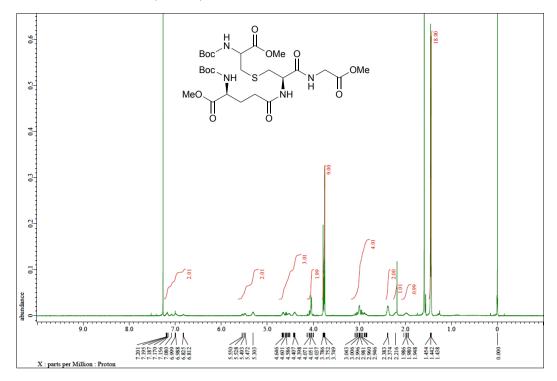

11: ¹H and ¹³C NMR (CDCl₃)

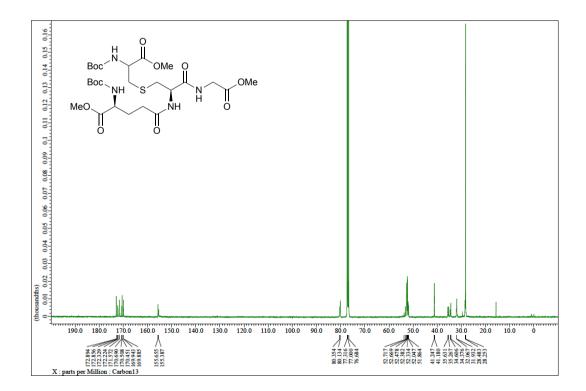



12: ¹H and ¹³C NMR (CDCl₃)

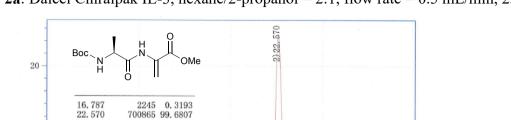



13: ¹H and ¹³C NMR (CDCl₃)

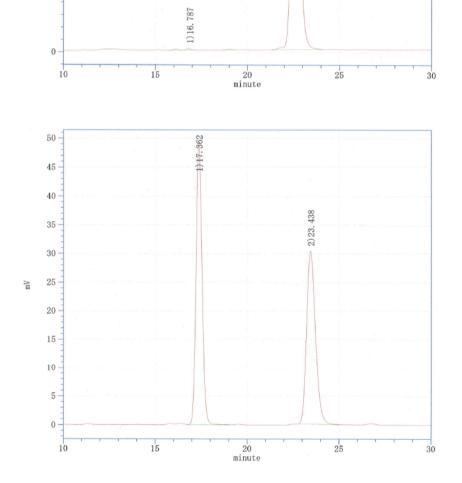


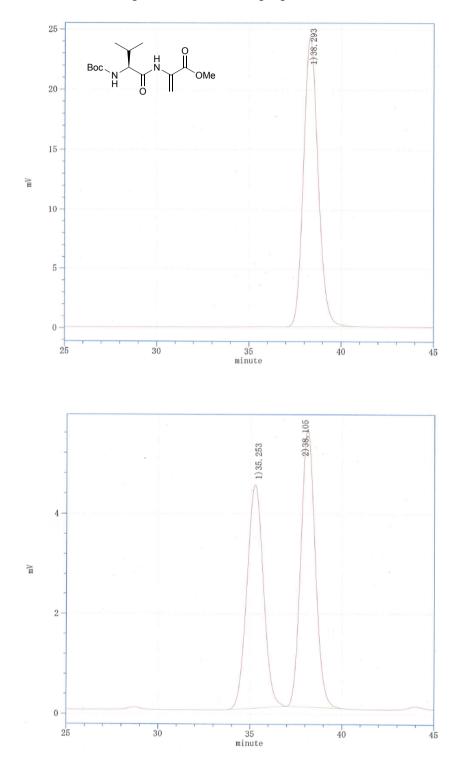

14: ¹H and ¹³C NMR (CDCl₃)

16: ¹H and ¹³C NMR (CDCl₃)

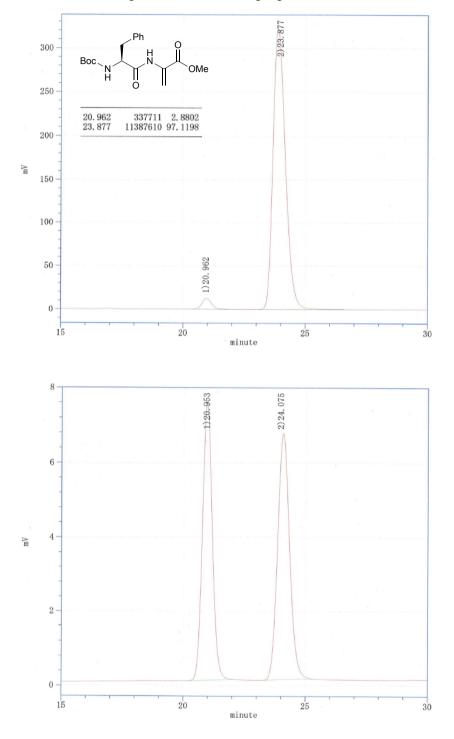

HPLC Charts

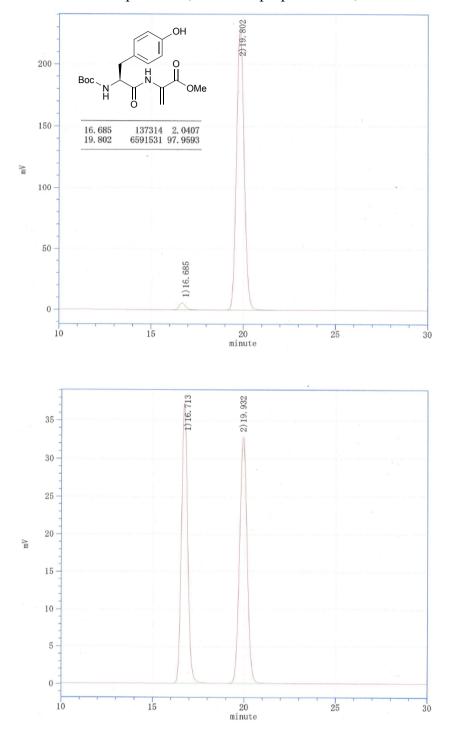
15

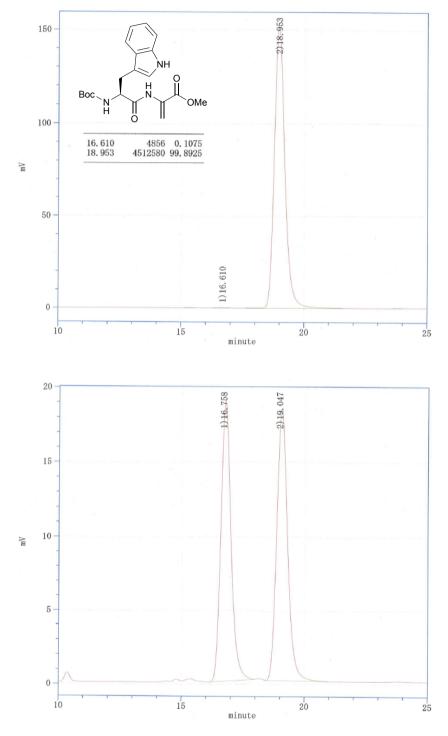

10

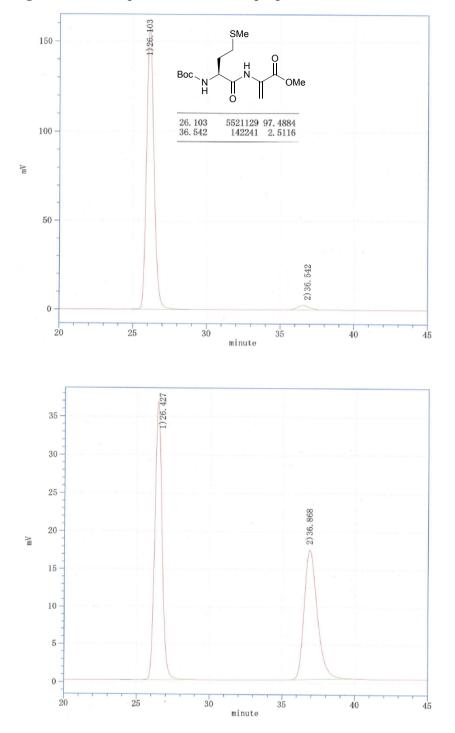

5

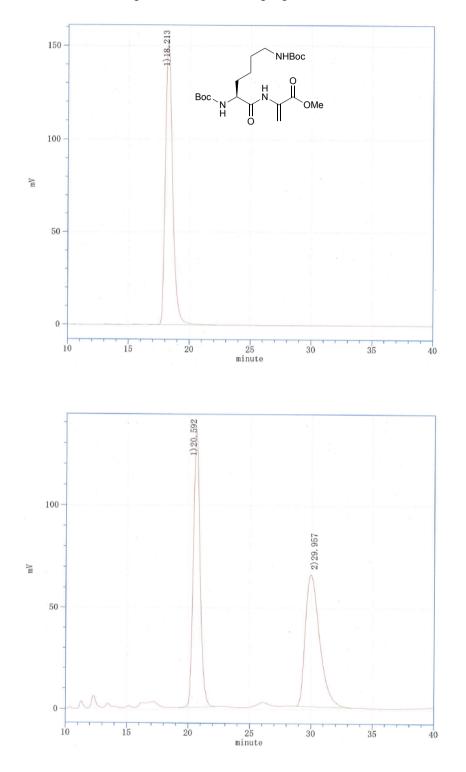
Λm

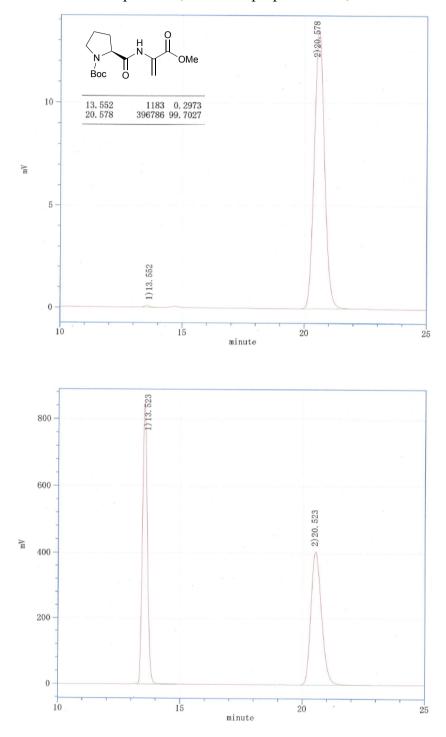


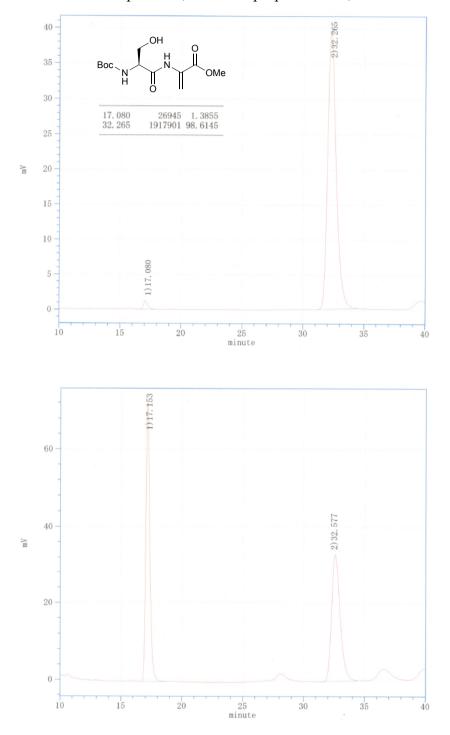


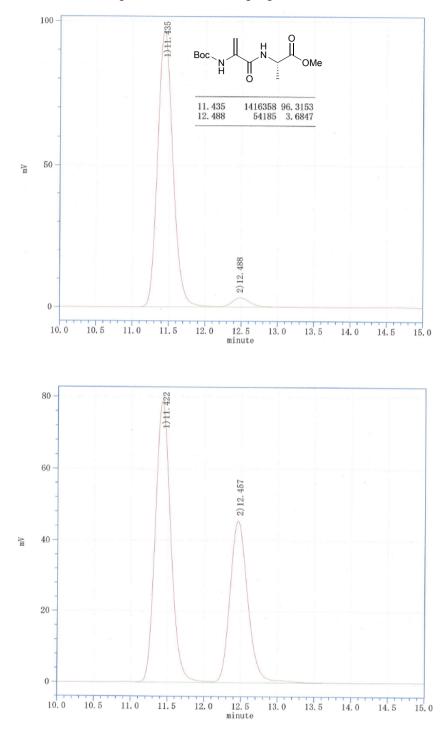

2c: Daicel Chiralpak IE-3, hexane/2-propanol = 5:1, flow rate = 0.5 mL/min, 254 nm

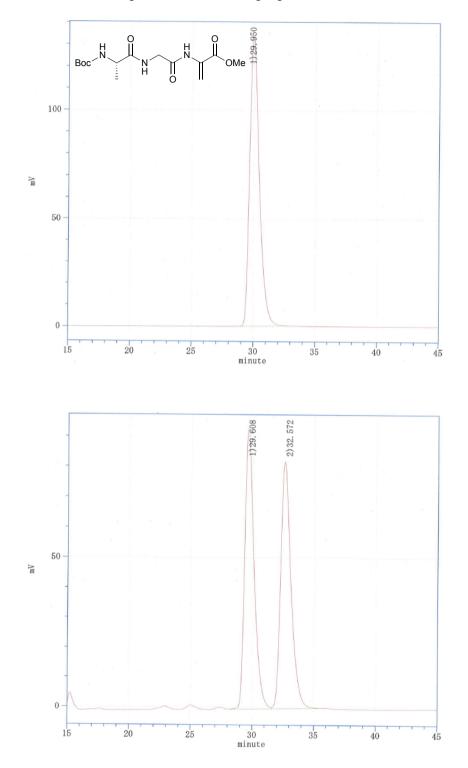

2d: Daicel Chiralpak IE-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm


2e: Daicel Chiralpak AD-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm


2f: Daicel Chiralpak IE-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm


2g: Daicel Chiralpak IE-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm


2h: Daicel Chiralpak IE-3, hexane/2-propanol = 1:1, flow rate = 0.5 mL/min, 254 nm


2i: Daicel Chiralpak ID-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm

2k: Daicel Chiralpak IE-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm

4: Daicel Chiralpak IE-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm

9: Daicel Chiralpak IE-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm