Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Supporting Information

<u>Contents</u>

1. Experimental Details	6
2. Vibrational Data	9
2.1 Urazole and its protonated derivatives	9
3. Crystal structures	15
3.1 [C ₂ N ₃ H ₃ O(OH)][SbF ₆]	15
$3.2 \ [C_2 N_3 H_3 (OH)_2] [Ge_2 F_{10}]$	20
$3.3 [C_2 N_3 H_3 (OH)_2] [(AsF_6)_2]$	28
$3.4 [C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF$	34
4. NMR data	40
4.1 Urazole	40
4.2 [C ₂ N ₃ H ₃ O(OH)][SbF ₆]	42
4.3 [C ₂ N ₃ H ₃ (OH) ₂][(SbF ₆) ₂]	44
5.Quantum chemical calculations	47
5.1 Urazole	47
$5.2 [C_2 N_3 H_3 O(OH)]$	50
$5.3 [C_2 N_3 H_3 (OH)_2]$	53
5.4 NPA charges	56
6. Literature	60

List of Figures

Figure 1: Raman spectra of urazole, $[C_2H_3N_3O(OH)][SbF_6]$, $[C_2H_3N_3O(OH)][SbF_6]$	₃ O(OH)][BF ₄],
$[C_2H_3N_3(OH)_2][Ge_2F_{10}], \ [C_2H_3N_3(OH)_2][(SbF_6)_2] \ and \ [C_2H_3N_3(OH)_2][(AsF_6)_2].$	9
Figure 2: Asymmetric unit of $[C_2N_3H_3O(OH)][SbF_6]$	15
Figure 3: Cation-cation contacts in $[C_2N_3H_3O(OH)][SbF_6]$	17
Figure 4: Asymmetric unit of $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$	20
Figure 5: Packing of $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$	21
Figure 6: Particular hydrogen bonds of $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$	22

Figure 7: Asymmetric unit of $[C_2N_3H_3(OH)_2][(AsF_6)_2]$,
Figure 8: Particular hydrogen bonds of $[C_2N_3H_3(OH)_2][(AsF_6)_2]$ 29
Figure 9: Asymmetric unit of $[C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF$
Figure 10: Particular hydrogen bonds of $[C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF$ 35
Figure 11: Optimized structure of urazole47
Figure 12: NPA charges of urazole48
Figure 13: Molecular 0.0004 bohr-3 3D isosurfaces with mapped electrostatic potential of
urazole
Figure 14: Optimized structure of $[C_2N_3H_3O(OH)]$ 50
Figure 15: NPA charges of $[C_2N_3H_3O(OH)]$ 51
Figure 16: Molecular 0.0004 bohr-3 3D isosurfaces with mapped electrostatic potential of
[C ₂ N ₃ H ₃ O(OH)]52
Figure 17: Optimized structure of $[C_2N_3H_3(OH)_2]$ 53
Figure 18: NPA charges of $[C_2N_3H_3(OH)_2]$ 54
Figure 19: Molecular 0.0004 bohr ⁻³ 3D isosurfaces with mapped electrostatic potential of
[C ₂ N ₃ H ₃ (OH) ₂]55
Figure 20: NPA charges of urazole and its protonated derivatives
Figure 21: Difference in NPA charges of the respective protonated species vs urazole57
Figure 22: NPA charges of parabanic acid and its protonated derivatives
Figure 23: Difference in NPA charges of the respective protonated species vs parabanic
acid59

List of Tables

Table 1: Observed vibrational frequencies and calculated vibrational frequencies of urazole
9
Table 2: Observed vibrational frequencies and calculated vibrational frequencies of
[C ₂ H ₃ N ₃ O(OH)][MF _y]11
Table 3: Observed vibrational frequencies and calculated vibrational frequencies of
$[C_2H_3N_3(OH)_2][MF_6]$ and $[C_2H_3N_3(OH)_2][Ge_2F_{10}]$ 12
Table 4: Bond lengths (Å) of $[C_2N_3H_3O(OH)][SbF_6]$ 15
Table 5: Particular H-bond lengths (Å) for [C ₂ N ₃ H ₃ O(OH)][SbF ₆]17
Table 6: Data collection and structure refinement for $[C_2N_3H_3O(OH)][SbF_6]$ 17
Table 7: Bond angles (°) for $[C_2N_3H_3O(OH)][SbF_6]$ 18

Table 8: Anisotropic atomic displacement parameters (Å ²) for $[C_2N_3H_3O(OH)][SbF_6]$ 19
Table 9: Bond lengths (Å) of $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$ 20
Table 10: Particular H-bond lengths (Å) for $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$ 22
Table 11: Data collection and structure refinement for $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$ 24
Table 12: Bond angles (°) for $[C_2N_3H_3(OH)_2][Ge_2F_{10}].$ 25
Table 13: Anisotropic atomic displacement parameters (Å ²) for $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$. 26
Table 14: Bond lengths (Å) of $[C_2N_3H_3(OH)_2][(AsF_6)_2]$ 28
Table 15: Particular H-bond lengths (Å) for $[C_2N_3H_3(OH)_2][(AsF_6)_2]$
Table 16: Data collection and structure refinement for $[C_2N_3H_3(OH)_2][(AsF_6)_2]$ 30
Table 17: Bond angles (°) for $[C_2N_3H_3(OH)_2][(AsF_6)_2]$
Table 18: Anisotropic atomic displacement parameters $(Å^2)$ for $[C_2N_3H_3(OH)_2][(AsF_6)_2]$. 32
Table 19: Bond lengths (Å) of $[C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF$ 34
Table 20: Particular H-bond lengths (Å) for $[C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF$ 35
Table 21: Data collection and structure refinement for $[C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF36$
Table 22: Bond angles (°) for $[C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF$ 37
Table 23: Anisotropic atomic displacement parameters (Ų) for $[C_2N_3H_3(OH)_2][(SbF_6)_2]$.
2HF
Table 24: Comparison of bond lengths (Å) of urazole, $[C_2N_3H_3O(OH)]$ and $[(C_2N_3H_3(OH)_2]$.

List of Images

Image 1: Crystals of $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$ under the microscope.23

1. Experimental Details

Caution! Anhydrous HF, BF_3 , GeF_4 , AsF_5 , and SbF_5 can cause severe burns and contact with the skin must be avoided and the compounds should only be handled in a well-ventilated fume hood. Any of the described formed salts may form HF by hydrolysis.

Materials and apparatus:

All reactions were carried out either in FEP/PFA reactors closed with a stainless steel valve, employing standard Schlenk technique with a stainless steel vacuum line. HF was dried with F_2 prior to use.

Raman spectra were recorded on a Bruker MultiRAM FT-Raman spectrometer with Nd:YAG laser excitation ($\lambda = 1064$ nm). For Raman measurements, samples of products were transferred into a cooled glass cell, which were evacuated afterwards. The educts were transferred into NMR tubes and measured at room temperature.

NMR spectra were recorded on a Jeol ECX400 NMR instrument. The spectrometer was externally referenced to CFCl₃ for ¹⁹F, CH₃NO₂ for ¹⁴N and to tetramethylsilane for ¹H and ¹³C NMR spectra. The spectra were recorded inside 4 mm FEP NMR tube inliners. Acetoned₆ was employed for external shimming when *a*HF was used as solvent for the respective compounds. The NMR samples were prepared by (re-)dissolving the respective compound at the designated measuring temperature in *a*HF and transferring the solution into a 4 mm FEP NMR tube inliner. The inliner was then frozen and flame sealed. For visualization and evaluation MestReNova Version 12.0.2 was employed.^[1]

The low-temperature X-ray diffraction of was performed with an Oxford X-Calibur3 equipped with a Kappa CCD detector, operating with Mo-K_a radiation ($\lambda = 0.71073$ Å) and a Spellman generator (voltage 50 kV, current 40 mA). The program CrysAlisPro 1.171.38.46 (Rigaku OD, 2015)^[2] was employed for the data collection and reduction. The structures were solved utilizing SHELXT^[3] and SHELXL-2018/3^[4] of the WINGX software package.^[5] The structures were checked using the software PLATON.^[6] The absorption correction was performed using the SCALE3 ABPSACK multiscan method.^[7] Visualization was done by Mercury 2020.2.0.^[8]

Computational methods:

All here presented calculations were done using DFT, B3LYP/6-311G++(3d2f,3p2d) level of theory by Gaussian 16.^[9] NMR calculations were done using the GIAO method on the described level. Mapped Electrostatic Potentials were calculated using DFT, B3LYP/6-311G++(3df, 2pd) level of theory by Gaussian 09.^[10]

Preparations:

Urazole was used without further purification. Urazole (98%) were purchased from abcr. Purity was checked by NMR and Raman spectroscopy.

Synthesis of $[C_2N_3H_3O(OH)][SbF_6]$:

Antimony pentafluoride (135 mg, 0.62 mmol, 1 eq.) and anhydrous HF (ca. 3 mL) were condensed into an FEP reactor at –196 °C. The mixture was homogenized at –40 °C for 15 min. After freezing the solution, urazole (63 mg, 0.62 mmol, 1 eq.) was added under nitrogen atmosphere. Followed by removing the nitrogen from the reaction vessel, the mixture was warmed to –40 °C and vigorously mixed. The mixture was then cooled down to –78°C, so that excess *a*HF could be removed from the system. $[C_2N_3H_3O(OH)][SbF_6]$ was obtained as a colorless solid, which was stable at room temperature over some hours.

Synthesis of $[C_2N_3H_3O(OH)][BF_3]$:

Boron trifluoride (68 mg, 1 mmol, 4 eq.) and anhydrous HF (ca. 3 mL) were condensed into an FEP reactor at –196 °C. The mixture was homogenized at –40 °C for 15 min. After freezing the solution, urazole (25 mg, 0.25 mmol, 1 eq.) was added under nitrogen atmosphere. Followed by removing the nitrogen from the reaction vessel, the mixture was warmed to –40 °C and vigorously mixed. The mixture was then cooled down to –78°C, so that excess *a*HF could be removed from the system. $[C_2N_3H_3O(OH)][BF_4]$ was obtained as a colorless solid, which was stable at room temperature over some minutes.

Synthesis of $[C_2N_3H_3(OH)_2][(SbF_6)_2]$:

Antimony pentafluoride (120 mg, 0.55 mmol, 3 eq.) and anhydrous HF (ca. 3 mL) were condensed into an FEP reactor at -196° C. The mixture was homogenized at -40° C for 15 min. After freezing the solution, urazole (19 mg, 0.18 mmol, 1 eq.) was added under

nitrogen atmosphere. Followed by removing the nitrogen from the reaction vessel, the mixture was warmed to -40 ° C and vigorously mixed. The mixture was then cooled down to -78° C, so that excess *a*HF could be removed from the system. $[C_2N_3H_3O(OH)][SbF_6]$ was obtained as a colorless solid, which was stable at room temperature over some hours.

Synthesis of $[C_2N_3H_3(OH)_2][(AsF_6)_2]$:

Arsenic pentafluoride (204 mg, 1.2 mmol, 3 eq.) and anhydrous HF (ca. 3 mL) were condensed into an FEP reactor at -196 ° C. The mixture was homogenized at -40 ° C for 15 min. After freezing the solution, urazole (25 mg, 0.25 mmol, 1 eq.) was added under nitrogen atmosphere. Followed by removing the nitrogen from the reaction vessel, the mixture was warmed to -40 ° C and vigorously mixed. The mixture was then cooled down to -78° C, so that excess *a*HF could be removed from the system. $[C_2N_3H_3(OH)_2][(AsF_6)_2]$ was obtained as a colorless solid, which was stable at room temperature over some minutes.

Synthesis of $[(C_2N_3H_3(OH))_2][Ge_2F_{10}]$:

Germanium tetrafluoride (178 mg, 1.2 mmol, 3 eq.) and anhydrous HF (ca. 3 mL) were condensed into an FEP reactor at –196 °C. The mixture was homogenized at –40 °C for 15 min. After freezing the solution, urazole (40 mg, 0.4 mmol, 1 eq.) was added under nitrogen atmosphere. Followed by removing the nitrogen from the reaction vessel, the mixture was warmed to –50 °C and vigorously mixed. The mixture was then cooled down to –78°C, so that excess *a*HF could be removed from the system. $[C_2N_3H_3(OH))_2][Ge_2F_{10}]$ was obtained as a colorless solid, which was stable at room temperature over some minutes.

2. Vibrational Data

2.1 Urazole and its protonated derivatives

Underlined numbers in the listings of the measured Raman frequencies indicate vibrations of the respective anions.

Figure 1: Raman spectra of urazole, $[C_2H_3N_3O(OH)][SbF_6]$, $[C_2H_3N_3O(OH)][BF_4]$, $[C_2H_3N_3(OH)_2][Ge_2F_{10}]$, $[C_2H_3N_3(OH)_2][(SbF_6)_2]$ and $[C_2H_3N_3(OH)_2][(AsF_6)_2]$.

Table 1: Observed vibrational frequencies and calculated vibrational frequencies of urazole $[cm^{-1}]$ (calculated on B3LYP/6-311G++(3d2f, 3p2d) level of theory, Raman intensities in Å⁴/u).

exp. frequency (Intensity)	calc. frequency (Intensity)	assignment
	3705(76)	v (NH)
	3639(128)	v (NH)
	3636(53)	v (NH)
1733(12)	1755(27)	<i>v</i> _s (CO)

1704(8)	1718(3)	<i>v</i> _{as} (CO)
1464(6)		
1430(19)	1430(6)	ρ (NH)
	1405(5)	δ (NH)
1331(8)	1337(5)	δ (NH)
	1331(7)	δ (NH)
1258(2)	1205(6)	v (CN)
1123(8)	1104(2)	v (NN)
1043(5)		
1033(10)		
1010(52)	979(15)	ring breathing
770(6)	749(2)	δ (ring)
717(7)		
687(8)	704(2)	δ (ring) (out of plane)
664(11)	669(18)	τ (NH) + δ (ring)
601(17)		
558(2)	574(2)	δ (NH)
	555(3)	δ (NH)
	550(2)	δ (NH)
	518(3)	ω (NH)
409(7)		
362(3)	382(2)	δ (CO)
354(2)		
205(4)		
180(8)		
152(47)		
145(40)		
134(27)		
119(22)		
83(100)		
71(12)		
56(3)		

Table 2: Observed vibrational frequencies and calculated vibrational frequencies of $[C_2H_3N_3O(OH)][MF_y]$ [cm⁻¹] (M= Sb, B; y= 6 for Sb, y= 4 for B)(calculated on B3LYP/6-311G++(3d2f, 3p2d) level of theory, Raman intensities in Å⁴/u).

exp. frequency	exp. frequency	calc. frequency	assignment
(Intensity)	(Intensity)	(Intensity)	
[cation][SbF ₆]	[cation][BF ₄]		
		3755(119)	v (OH)
		3648(126)	v (NH)
		3638(31)	v (NH)
		3633(18)	v (NH)
		1810(20)	v (CO)
	1625(14)	1669(3)	v (CO(H))
1569(10)	1541(13)	1575(4)	v (CN)
1440(9)		1430(5)	ρ (NH)
1420(9)			
1357(9)	1391(13)	1378(4)	δ (NH)
1332(7)	1315(13)	1320(2)	δ (NH)
1296(6)			
1139(13)		1140(5)	v (C–N)
		1120(4)	v (NN)
1056(31)	1061(33)	1085(11)	δ (OH)
1021(15)		1032(15)	v (C–N)
		930(3)	v (C–N)
809(10)			
800(9)	793(17)	760(3)	δ (CNN)
	<u>777(100)</u>		
689(28)		703(1)	δ (out-of-plane)
683(17)			
671(29)	677(23)	647(12)	ring breathing (CO)
<u>654(100)</u>			
638(15)		639(2)	δ (NH)
		633(2)	δ (NH) + δ (ring)
576(16)			
555(22)	559(17)	534(5)	δ (CO + COH)
	542(22)		
	<u>526(23)</u>		
	493(17)	475(3)	ω (NH + OH)

419(11)	422(18)		
388(12)	365(26)	391(2)	τ (NH + OH)
	355(26)		
		350(2)	δ (CO + COH)
		320(1)	δ (OH + NN)
288(20)		290(1)	δ (OH)
281(36)			
	240(18)		
194(10)	204(19)		
173(14)			
139(34)			
115(46)			
97(23)			
75(13)			

Table 3: Observed vibrational frequencies and calculated vibrational frequencies of $[C_2H_3N_3(OH)_2][MF_6]$ and $[C_2H_3N_3(OH)_2][Ge_2F_{10}]$ [cm⁻¹] (M= Sb, As)(calculated on B3LYP/6-311G++(3d2f, 3p2d) level of theory, Raman intensities in Å⁴/u).

exp. frequency	exp. frequency	exp. frequency	calc.	assignment
(Intensity)	(Intensity)	(Intensity)	frequency	
$[cation][Ge_2F_{10}]$	$[cation][SbF_6][Sb_2F$	$[cation][AsF_6]$	(Intensity)	
	11]			
			3668(161)	<i>v</i> (OH)
			3660(4)	<i>v</i> (OH)
			3560(68)	v (NH)
			3546(17)	v (NH)
			3522(20)	v (NH)
1733(13)			1719(1)	v (CO)
1623(15)				
1535(12)	1570(6)	1508(32)	1528(4)	v (CN)
	1492(10)		1493(11)	δ (NH)
1392(11)	1381(5)	1373(13)	1382(3)	δ (NH)
			1366(1)	δ (NH)
1300(16)		1320(13)	1311(5)	v (CN) +
				δ (NH)

1180(10)		1170(11)	1139(2)	v (NN)
1065(100)	1057(22)	1067(34)		ring
	1039(4)	1045(21)	1044(23)	breathing
				(CN)
			997(5)	δ (ΟΗ)
			992(3)	v (OH)
800(12)	809(9)	798(24)	765(3)	δ (ring)
		713(56)		
<u>697(64)</u>	<u>673(100)</u>			
	652(27)	682(100)		
672(29)		673(71)	666(16)	δ (2x COH,
		667(52)		ring)
	639(15)	626(20)		
614(27)	616(5)	616(14)		
		609(15)		
		579(20)		
553(28)	557(7)	565(22)		
	541(7)	530(19)	523(4)	δ (ΟΗ +
				NH)
437(18)		422(15)		
	404(7)	407(15)	404(2)	$\omega + \tau$ (OH
				+ NH)
		392(16)		
387(17)		383(24)	348(1)	δ (COH)
		375(52)		
		370(52)		
<u>337(18)</u>	<u>298(23)</u>			
287(18)	281(17)	281(14)		
	230(9)			
		254(15)		
192(21)				
153(40)	145(15)	159(17)		
110(39)	106(16)	126(49)		
100(60)		98(52)		
84(32)	87(10)			

3. Crystal structures

 $3.1 [C_2 N_3 H_3 O(OH)][SbF_6]$

Figure 2: Asymmetric unit of $[C_2N_3H_3O(OH)][SbF_6]$, view along *a*, displacement ellipsoids at 50% probability.

Monoprotonated Urazole crystallizes as $[C_2N_3H_3O(OH)][SbF_6]$ in the monoclinic space group $P2_1/c$. A unit cell contains 4 formula units.

F3	1.8702(15)
F5	1.8721(14)
F2	1.8736(14)
F4	1.8782(15)
F1	1.8801(15)
F6	1.8841(14)
C2	1.233(3)
C1	1.284(3)
C1	1.347(3)
C2	1.389(3)
	F3 F5 F2 F4 F1 F6 C2 C1 C2 C1 C2 C1 C2

Table 4: Bond lengths (Å) of $[C_2N_3H_3O(OH)][SbF_6]$.

N3	C2	1.342(3)
N3	N2	1.380(3)
N2	C1	1.315(3)

Figure 3: Cation-cation contacts in $[C_2N_3H_3O(OH)][SbF_6]$, view along *c*, displacement ellipsoids at 50% probability.

Table 5: Particular H-bond lengths (Å) for $[C_2N_3H_3O(OH)][SbF_6]$.

02	01`(via H4`)	2.547(2)
----	--------------	----------

The cations are connected by hydrogen bonds between the protonated carbonyl group to the unprotonated carbonyl group of another cation, leading to endless zig-zag-chains.

Table 6: Data collection and structure refinement for $[C_2N_3H_3O(OH)][SbF_6]$.

	$[C_2N_3H_3O(OH)][SbF_6]$		
Chemical formula	$C_2 H_4 F_6 N_3 O_2 Sb$		
Formula weight	337.84 g/mol		
Temperature	110(2) K		
Wavelength	0.71073 Å		
Crystal size	0.195 x 0.141 x 0.106 mm		
Crystal habit	colorless block		
Crystal system	monoclinic		
Space group	P 2 ₁ /c		

Unit cell dimensions	a = 10.5271(9) Å	$\alpha = 90^{\circ}$	
	b = 8.3036(4) Å	$\beta = 118.384(11)^{\circ}$	
	c = 10.5808(9) Å	$\gamma = 90^{\circ}$	
Volume	813.71(14) Å ³		
Z	4		
Density (calculated)	2.758 g/cm ³		
Absorption coefficient	3.480 mm ⁻¹		
F(000)	632		
Diffractometer	Oxford XCalibur		
Radiation source	MoK α , λ = 0.71073 Å		
Index ranges	-13<=h<=15, -12<=k<=7, -15<=l<=13		
Reflections collected	2706		
Absorption correction	multi-scan		
Max. and min. transmission	1.000 and 0.797		
Structure solution program	SHELXT 2018/3 (Sheldrick, 2018)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2018/3 (Sheldric	k, 2018)	
Goodness-of-fit on F ²	1.043		
Final R indices	2378 data; $I>2 \sigma(I)$	R1 = 0.0233, wR2 =	
		0.0515	
	all data	R1 = 0.0295	
Weighting scheme	w=1/[¥s^2^(Fo^2^)+(0.02	04P)^2^] where	
	P=(Fo^2^+2Fc^2^)/3		
Largest diff. peak and hole	1.162 and -0.731 eÅ ⁻³		
R.M.S. deviation from mean	0.137 eÅ ⁻³		
CCDC-deposition number	2072534		

Table 7: Bond angles (°) for $[C_2N_3H_3O(OH)][SbF_6].$

F3	Sb1	F5	90.77(7)
F3	Sb1	F2	92.59(7)
F5	Sb1	F2	176.64(7)
F3	Sb1	F4	90.03(7)
F5	Sb1	F4	89.14(6)
F2	Sb1	F4	90.94(7)
F3	Sb1	F1	89.67(7)
F5	Sb1	F1	90.09(6)

F2	Sb1	F1	89.84(7)
F4	Sb1	F1	179.18(7)
F3	Sb1	F6	179.23(7)
F5	Sb1	F6	89.62(7)
F2	Sb1	F6	87.02(7)
F4	Sb1	F6	89.31(7)
F1	Sb1	F6	91.00(7)
C1	N1	C2	109.50(19
)
C2	N3	N2	109.71(19
)
C1	N2	N3	107.82(19
)
02	C2	N3	127.5(2)
02	C2	N1	127.9(2)
N3	C2	N1	104.61(19
)
01	C1	N2	123.8(2)
01	C1	N1	127.8(2)
N2	C1	N1	108.32(19
)

Table 8: Anisotropic atomic	displacement parameters	$(Å^2)$ for $[C_2N_3H_3O(OH)][SbF_6]$.
-----------------------------	-------------------------	---

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sb1	0.00913(8	0.01250(8	0.01016(8	-0.00045(5)	0.00441(6)	-0.00041(5)
)))			
F4	0.0210(8)	0.0303(8)	0.0101(7)	-0.0003(6)	0.0022(6)	-0.0043(6)
F5	0.0278(8)	0.0164(7)	0.0259(8)	-0.0001(6)	0.0143(7)	0.0058(6)
F1	0.0187(8)	0.0309(8)	0.0102(7)	-0.0002(6)	0.0016(6)	-0.0007(6)
F6	0.0170(7)	0.0227(7)	0.0285(8)	0.0030(6)	0.0165(7)	-0.0005(6)
F2	0.0279(9)	0.0139(7)	0.0277(8)	-0.0013(6)	0.0120(7)	0.0010(6)
F3	0.0170(7)	0.0349(9)	0.0280(8)	0.0084(7)	0.0143(7)	-0.0018(6)
02	0.0152(8)	0.0163(8)	0.0193(9)	0.0003(6)	0.0086(7)	-0.0037(6)
01	0.0171(9)	0.0170(8)	0.0195(9)	0.0057(7)	0.0102(8)	0.0021(7)
N1	0.0098(9)	0.0150(9)	0.0126(9)	0.0014(7)	0.0038(8)	0.0008(7)
N3	0.0122(10	0.0155(10	0.0154(10	0.0043(7)	0.0052(8)	0.0001(7)

)))			
N2	0.0103(9)	0.0128(9)	0.0143(9)	0.0016(7)	0.0044(8)	-0.0012(7)
C2	0.0132(11	0.0148(10	0.0109(10	-0.0014(8)	0.0061(9)	-0.0008(8)
)))			
C1	0.0137(11	0.0125(9)	0.0124(10	-0.0011(8)	0.0066(9)	0.0017(8)
))			

3.2 [C₂N₃H₃(OH)₂][Ge₂F₁₀]

Figure 4: Asymmetric unit of $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$, view along *a*, displacement ellipsoids at 50% probability.

Diprotonated Urazole crystallizes as $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$ in the monoclinic space group $P2_1/n$. A unit cell contains 4 formula units.

Ge1	F3	1.714(3)
Ge1	F2	1.743(3)
Ge1	F4	1.757(3)
Ge1	F1	1.774(3)
Ge1	F5	1.870(3)

Table 9: Bond lengths (Å) of $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$.

Ge1	F10	1.910(4)
Ge2	F6	1.730(4)
Ge2	F9	1.736(4)
Ge2	F7	1.755(3)
Ge2	F8	1.762(3)
Ge2	F10	1.893(3)
Ge2	F5	1.895(3)
01	C1	1.277(7)
01	H1	0.8200
02	C2	1.289(7)
02	H2	0.8201
N1	C1	1.313(8)
N1	N2	1.370(7)
N1	H4	0.8601
N2	C2	1.301(8)
N2	H5	0.8599
N3	C2	1.349(7)
N3	C1	1.360(7)
N3	H3	0.8600

Figure 5: Packing of $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$, view along *c*, displacement ellipsoids at 50% probability.

The cations are arranged around the infinite ${\sf Ge}_2{\sf F}_{10}$ anion chain.

Figure 6: Particular hydrogen bonds of $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$, view along *a*, displacement ellipsoids at 50% probability.

O2 (via H2)	F1	2.519(6)
O1 (via H1)	F8	2.531(6)
N2 (via H5)	F4	2.673(7)
N1 (via H4)	F9	2.616(7)
N3 (via H3)	F2	2.763(6)
N3 (via H3)	F7	2.976(6)

Table 10: Particular H-bond lengths (Å) for $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$.

Compared to the monoprotonated species, no contacts between the cations can be detected. Each hydrogen atom exhibits strong to moderate hydrogen bonds to various $[Ge_2F_{10}]$ chains.

Image 1: Crystals of $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$ under the microscope.

	$[C_2N_3H_3(OH)_2][Ge_2F_{10}]$		
Chemical formula	$C_2 H_5 F_{10} Ge_2 N_3 O_2$		
Formula weight	438.31 g/mol		
Temperature	101(2) K		
Wavelength	0.71073 Å		
Crystal size	0.395 x 0.268 x 0.212 mm		
Crystal habit	colorless plate		
Crystal system	monoclinic		
Space group	P 2 ₁ /n		
Unit cell dimensions	a = 7.8994(10) Å	$\alpha = 90^{\circ}$	
	b = 18.299(3) Å	$\beta = 114.751(16)^{\circ}$	
	c = 8.1991(11) Å	$\gamma = 90^{\circ}$	
Volume	1076.3(3) Å ³		
Z	4		
Density (calculated)	2.705 g/cm ³		
Absorption coefficient	5.733 mm ⁻¹		
F(000)	832		
Diffractometer	Oxford XCalibur		
Radiation source	MoK $lpha$, λ = 0.71073 Å		
Index ranges	-9<=h<=8, -22<=k<=19,	, -9<= <=10	
Reflections collected	2194		
Absorption correction	multi-scan		
Max. and min. transmission	1.000 and 0.765		
Structure solution program	SHELXT 2018/3 (Sheldric	k, 2018)	
Refinement method	Full-matrix least-squares	on F ²	
Refinement program	SHELXL-2018/3 (Sheldric	ck, 2018)	
Goodness-of-fit on F ²	1.030		
Final R indices	1731 data; I>2 σ (I) R1 = 0.0471, wR2 =		
	0.1183		
	all data $R1 = 0.0640$		
Weighting scheme	$w=1/[4s^{2}(Fo^{2})+(0.0538P)^{2}]$ where		
	P=(Fo^2^+2Fc^2^)/3		
Largest diff. peak and hole	1.334 and -0.954 eÅ ⁻³		
R.M.S. deviation from mean	0.190 eÅ-3		
CCDC-deposition number	2072535		

Table 11:	Data collection	and structure	refinement for	$[C_2N_3H_3(OH)_2][Ge_2F_{10}].$
10010 11.	Data concotion			

F3	Ge1	F2	94.42(18)
F3	Ge1	F4	172.38(19
)
F2	Ge1	F4	92.33(16)
F3	Ge1	F1	92.19(17)
F2	Ge1	F1	95.98(16)
F4	Ge1	F1	90.60(16)
F3	Ge1	F5	88.07(17)
F2	Ge1	F5	91.63(16)
F4	Ge1	F5	88.22(16)
F1	Ge1	F5	172.34(17
)
F3	Ge1	F10	89.71(19)
F2	Ge1	F10	172.80(15
)
F4	Ge1	F10	83.22(16)
F1	Ge1	F10	89.74(16)
F5	Ge1	F10	82.61(16)
F6	Ge2	F9	94.02(17)
F6	Ge2	F7	91.07(17)
F9	Ge2	F7	171.41(18
)
F6	Ge2	F8	97.85(18)
F9	Ge2	F8	92.31(18)
F7	Ge2	F8	93.85(17)
F6	Ge2	F10	171.55(17
)
F9	Ge2	F10	88.82(18)
F7	Ge2	F10	85.20(18)
F8	Ge2	F10	89.98(17)
F6	Ge2	F5	90.57(17)
F9	Ge2	F5	84.63(16)
F7	Ge2	F5	88.41(15)
F8	Ge2	F5	171.24(18
)
F10	Ge2	F5	81.77(15)

Table 12: Bond angles (°) for $[C_2N_3H_3(OH)_2][Ge_2F_{10}].$

Ge1	F5	Ge2	149.0(2)
Ge2	F10	Ge1	160.5(2)
C1	01	H1	110.2
C2	02	H2	108.6
C1	N1	N2	108.2(5)
C1	N1	H4	125.6
N2	N1	H4	126.3
C2	N2	N1	108.2(5)
C2	N2	H5	125.8
N1	N2	H5	126.0
C2	N3	C1	107.7(6)
C2	N3	H3	126.6
C1	N3	H3	125.7
01	C1	N1	130.1(6)
01	C1	N3	122.4(6)
N1	C1	N3	107.5(5)
02	C2	N2	129.1(6)
02	C2	N3	122.5(6)
N2	C2	N3	108.4(5)

Table 13: Anisotropic atomic displacement parameters (Å²) for $[C_2N_3H_3(OH)_2][Ge_2F_{10}]$.

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ge1	0.0129(3)	0.0165(4)	0.0104(3)	-0.0017(3)	0.0035(2)	0.0005(2)
Ge2	0.0163(3)	0.0162(4)	0.0114(3)	-0.0001(3)	0.0060(2)	-0.0022(2)
F1	0.0324(19	0.027(2)	0.0118(16	-0.0001(16)	0.0029(14)	0.0037(16)
))			
F2	0.0279(18	0.015(2)	0.0208(17	0.0016(15)	0.0103(14)	0.0053(15)
))			
F3	0.0235(18	0.049(3)	0.036(2)	-0.015(2)	0.0166(16)	-0.0181(19)
)					
F4	0.0235(17	0.021(2)	0.0304(19	0.0031(17)	0.0099(14)	-0.0050(16)
))			
F5	0.0293(17	0.027(2)	0.0130(17	-0.0027(15)	0.0026(13)	0.0087(17)
))			
F6	0.0223(17	0.020(2)	0.048(2)	-0.0019(19)	0.0183(16)	-0.0027(16)
)					

F7	0.0196(17	0.037(3)	0.0252(18	0.0023(18)	0.0123(14)	0.0062(17)
))			
F8	0.051(2)	0.030(2)	0.0114(17	0.0067(17)	0.0021(16)	-0.002(2)
)			
F9	0.047(2)	0.026(2)	0.0272(19	-0.0018(18)	0.0252(16)	0.0087(19)
)			
F10	0.0302(19	0.028(2)	0.030(2)	-0.0049(18)	0.0048(15)	0.0156(18)
)					
01	0.030(2)	0.026(3)	0.0123(19	0.0049(19)	0.0068(16)	-0.001(2)
)			
02	0.025(2)	0.025(3)	0.017(2)	-0.003(2)	0.0045(16)	-0.005(2)
N1	0.017(2)	0.018(3)	0.027(3)	0.007(2)	0.011(2)	0.007(2)
N2	0.020(2)	0.013(3)	0.026(3)	-0.005(2)	0.012(2)	-0.005(2)
N3	0.022(2)	0.013(3)	0.014(2)	0.003(2)	0.0072(19)	-0.001(2)
C1	0.016(3)	0.020(4)	0.020(3)	0.011(3)	0.009(2)	0.007(3)
C2	0.013(3)	0.021(4)	0.019(3)	-0.007(3)	0.007(2)	-0.002(2)

$3.3 [C_2 N_3 H_3 (OH)_2] [(AsF_6)_2]$

Figure 7: Asymmetric unit of $[C_2N_3H_3(OH)_2][(AsF_6)_2]$, view along *a*, displacement ellipsoids at 50% probability.

Diprotonated Urazole crystallizes as $[C_2N_3H_3(OH)_2][(AsF_6)_2]$ in the orthorhombic space group *P*bca. A unit cell contains 8 formula units.

As1	F6	1.7074(16)
As1	F3	1.7074(18)
As1	F4	1.7084(19)
As1	F1	1.7165(17)
As1	F5	1.7355(16)
As1	F2	1.7444(17)
As2	F12	1.695(2)
As2	F10	1.7151(16)
As2	F9	1.7189(16)
As2	F8	1.7229(16)
As2	F11	1.7270(17)

Table 14: Bond lengths (Å) (of $[C_2N_3H_3(OH)_2][(AsF_6)_2]$.
------------------------------	-------------------------------------

As2	F7	1.7368(19)
01	C1	1.279(4)
02	C2	1.283(3)
N1	C2	1.354(4)
N1	C1	1.355(3)
N3	C1	1.308(4)
N3	N2	1.372(3)
N2	C2	1.316(3)

Figure 8: Particular hydrogen bonds of $[C_2N_3H_3(OH)_2][(AsF_6)_2]$, view along *c*, displacement ellipsoids at 50% probability.

Table 15: Particular H-bond lengths (Å) for $[C_2N_3H_3(OH)_2][(AsF_6)_2]$.

01 (via H1)	F2	2.583(3)
O2 (via H2)	F6	2.791(3)
O2 (via H2)	F8	2.721(3)
N1 (via H3)	F5	2.722(3)
N2 (via H5)	F9	2.858(3)
N2 (via H5)	F11	2.768(3)
N3 (via H4)	F7	2.727(3)
N3 (via H4)	F9	2.858(3)

Table 16: Data collection and structure refinement for $[C_2N_3H_3(OH)_2][(AsF_6)_2]$.

	$[C_2N_3H_3(OH)_2][(AsF_6)_2]$		
Chemical formula	$C_2 H_5 As_2 F_{12} N_3 O_2$		
Formula weight	480.93 g/mol		
Temperature	108(2) K		
Wavelength	0.71073 Å		
Crystal size	0.540 x 0.233 x 0.143 mm		
Crystal habit	colorless plate		
Crystal system	orthorhombic		
Space group	Pbca		
Unit cell dimensions	a = 9.4694(7) Å	$\alpha = 90^{\circ}$	
	b = 11.6800(7) Å	$\beta = 90^{\circ}$	
	c = 21.1896(11) Å $\gamma = 90^{\circ}$		
Volume	2343.6(3) Å ³		
Z	8		
Density (calculated)	2.726 g/cm ³		
Absorption coefficient	5.874 mm ⁻¹		
F(000)	1824		
Diffractometer	Oxford XCalibur		
Radiation source	MoK $lpha$, λ = 0.71073 Å		
Index ranges	-13<=h<=13, -17<=k<=13, -31<=l<=31		
Reflections collected	4001		
Absorption correction	multi-scan		
Max. and min. transmission	1.000 and 0.237		
Structure solution program	SHELXT 2018/3 (Sheldrick, 2018)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2018/3 (Sheldrick, 2018	3)	

Goodness-of-fit on F ²	1.096		
Final R indices	3215 data; I>2 σ (I)	R1 = 0.0328, wR2 =	
		0.0735	
	all data	R1 = 0.0489	
Weighting scheme	$w=1/[\$s^2(Fo^2)+(0.0260P)^2+3.4141P]$ where		
	P=(Fo^2^+2Fc^2^)/3		
Largest diff. peak and hole	1.020 and -0.846 eÅ ⁻³		
R.M.S. deviation from mean	0.144 eÅ ⁻³		
CCDC-deposition number	2072533		

Table 17: Bond angles (°) for $[C_2N_3H_3(OH)_2][(AsF_6)_2].$

F6	As1	F3	90.67(9)
F6	As1	F4	91.41(10)
F3	As1	F4	90.31(10)
F6	As1	F1	90.83(9)
F3	As1	F1	178.19(9)
F4	As1	F1	90.67(10)
F6	As1	F5	178.53(9)
F3	As1	F5	89.53(9)
F4	As1	F5	90.04(9)
F1	As1	F5	88.95(8)
F6	As1	F2	90.16(9)
F3	As1	F2	90.20(9)
F4	As1	F2	178.35(9)
F1	As1	F2	88.78(9)
F5	As1	F2	88.39(8)
F12	As2	F10	91.43(10)
F12	As2	F9	91.26(10)
F10	As2	F9	90.27(8)
F12	As2	F8	91.76(9)
F10	As2	F8	176.63(10
)
F9	As2	F8	90.76(8)
F12	As2	F11	90.38(11)
F10	As2	F11	89.52(8)
F9	As2	F11	178.35(10

)
F8	As2	F11	89.35(8)
F12	As2	F7	179.77(12
)
F10	As2	F7	88.67(10)
F9	As2	F7	88.53(9)
F8	As2	F7	88.15(9)
F11	As2	F7	89.83(10)
C2	N1	C1	107.9(2)
C1	N3	N2	108.4(2)
C2	N2	N3	108.0(2)
01	C1	N3	123.5(2)
01	C1	N1	128.6(3)
N3	C1	N1	107.9(3)
02	C2	N2	130.2(3)
02	C2	N1	122.0(2)
N2	C2	N1	107.8(2)

Table 18: Anisotropic atomic displacement parameters $(Å^2)$ for $[C_2N_3H_3(OH)_2][(AsF_6)_2]$.

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
As1	0.01570(15	0.01354(12	0.01227(12	0.00120(9)	0.00223(9)	0.00198(10)
)))			
As2	0.01630(15	0.01212(12	0.01034(11	0.00062(8)	-0.00090(9)	0.00127(10)
)))			
F9	0.0244(10)	0.0198(8)	0.0240(8)	-0.0062(6)	-0.0040(7)	0.0080(7)
F2	0.0197(10)	0.0229(8)	0.0201(8)	0.0005(6)	0.0067(7)	-0.0005(7)
F5	0.0337(11)	0.0156(8)	0.0183(8)	-0.0009(6)	0.0066(7)	0.0075(7)
F8	0.0281(11)	0.0272(9)	0.0109(7)	0.0008(6)	-0.0040(7)	0.0008(7)
F1	0.0268(11)	0.0235(8)	0.0247(8)	0.0008(7)	-0.0103(7)	-0.0004(7)
F7	0.0203(10)	0.0327(10)	0.0279(9)	0.0148(7)	0.0027(7)	-0.0013(8)
F11	0.0401(13)	0.0195(8)	0.0256(9)	-0.0037(7)	-0.0084(8)	0.0151(8)
F10	0.0436(13)	0.0256(9)	0.0131(7)	-0.0039(6)	-0.0103(7)	0.0104(8)
F6	0.0301(11)	0.0137(7)	0.0318(9)	0.0004(6)	0.0011(8)	0.0040(7)
F3	0.0358(13)	0.0353(10)	0.0166(8)	0.0022(7)	-0.0071(8)	0.0008(9)
F4	0.0252(12)	0.0331(10)	0.0396(11)	0.0161(8)	0.0161(8)	0.0042(8)
01	0.0168(11)	0.0252(10)	0.0189(9)	-0.0059(8)	0.0018(8)	-0.0023(8)

F12	0.0248(12)	0.0358(10)	0.0409(11)	0.0158(9)	-0.0060(9)	-0.0127(8)
02	0.0182(12)	0.0224(10)	0.0227(10)	-0.0069(8)	0.0024(8)	-0.0050(8)
N1	0.0171(12)	0.0142(10)	0.0112(9)	-0.0025(8)	0.0040(8)	0.0003(9)
N3	0.0164(13)	0.0183(11)	0.0147(10)	-0.0062(8)	0.0003(8)	0.0004(9)
N2	0.0141(13)	0.0210(11)	0.0165(10)	-0.0032(8)	0.0012(9)	0.0014(9)
C1	0.0191(14)	0.0144(11)	0.0101(10)	0.0001(8)	0.0013(9)	0.0004(10)
C2	0.0190(15)	0.0146(11)	0.0119(10)	0.0010(9)	0.0019(9)	-0.0001(10)

 $3.4 [C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF$

Figure 9: Asymmetric unit of $[C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF$, view along *a*, displacement ellipsoids at 50% probability.

Diprotonated Urazole crystallizes as $[C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF$ in the monoclinic space group *P* n. A unit cell contains 2 formula units.

C2	02	1.273(13)
C2	N3	1.294(14)
C2	N1	1.372(14)
N3	N2	1.373(8)
C1	01	1.290(14)
C1	N2	1.296(15)
C1	N1	1.376(14)
Sb1	F4	1.849(11)
Sb1	F6	1.858(11)
Sb1	F5	1.876(7)
Sb1	F3	1.878(11)

Table 19: Bond lengths	(Å) of	$[C_2N_3H_3(OH)]$	$_2][(SbF_6)_2]$ ·	2HF.
------------------------	--------	-------------------	--------------------	------

Sb1	F2	1.899(6)
Sb1	F1	1.906(11)
Sb2	F9	1.857(11)
Sb2	F11	1.858(7)
Sb2	F7	1.877(12)
Sb2	F12	1.879(12)
Sb2	F8	1.880(6)
Sb2	F10	1.904(11)

Figure 10: Particular hydrogen bonds of $[C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF$, view along *c*, displacement ellipsoids at 50% probability.

Table 20: Particular H-bond lengths (A	s (Å) for [C ₂ N ₃ H ₃ (OH) ₂][(SbF ₆) ₂] · 2H	۱F.
--	---	-----

01 (via H4)	F2	2.57(1)
O2 (via H5)	F7	2.59(1)
N1 (via H1)	F14	2.87(1)
N2 (via H2)	F1	2.66(1)
N2 (via H2)	F13	2.95(1)
N3 (via H3)	F8	2.71(1)

N3 (via H3)	F13	2.96(1)
-------------	-----	---------

Fable 21: Data collectior	n and structure	refinement for	$[C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF.$
---------------------------	-----------------	----------------	---

	$[C_2N_3H_3(OH)_2][SbF_6] \cdot 2HF$			
Chemical formula	C ₂ H ₇ F ₁₄ N ₃ O ₂ Sb ₂			
Formula weight	614.63 g/mol			
Temperature	107(2) K			
Wavelength	0.71073 Å			
Crystal size	0.327 x 0.213 x 0.129 mm			
Crystal habit	colorless block			
Crystal system	monoclinic			
Space group	Pn			
Unit cell dimensions	a = 6.5268(4) Å	$\alpha = 90^{\circ}$		
	b = 8.4200(5) Å	$\beta = 102.487(7)^{\circ}$		
	c = 12.0682(8) Å	$\gamma = 90^{\circ}$		
Volume	647.53(7) Å ³			
Z	2			
Density (calculated)	3.512 g/cm ³			
Absorption coefficient	4.359 mm ⁻¹			
F(000)	568			
Diffractometer	Oxford XCalibur			
Radiation source	MoK α , λ = 0.71073 Å			
Index ranges	-9<=h<=9, -12<=k<=12, -17<=l<=18			
Reflections collected	4344			
Absorption correction	multi-scan			
Max. and min. transmission	1.000 and 0.502			
Structure solution program	SHELXT 2018/3 (Sheldric	ck, 2018)		
Refinement method	Full-matrix least-squares	on F ²		
Refinement program	SHELXL-2018/3 (Sheldrid	ck, 2018)		
Goodness-of-fit on F ²	1.044			
Final R indices	3585 data; I>2 σ (I) R1 = 0.0288, wR2 =			
	0.0568			
	all data R1 = 0.0410			
Weighting scheme	$w=1/[4s^{2}(Fo^{2})+(0.0175P)^{2}]$ where			
	P=(Fo^2^+2Fc^2^)/3			
Largest diff. peak and hole	1.121 and -0.843 eÅ ⁻³			

R.M.S. deviation from mean	0.178 eÅ ⁻³
CCDC-deposition number	2072532

Table 22: Bond angles (°) for $[C_2N_3H_3(OH)_2][(SbF_6)_2]\cdot 2HF.$

02	C2	N3	123.9(11)
02	C2	N1	128.4(11)
N3	C2	N1	107.6(9)
C2	N3	N2	110.0(8)
01	C1	N2	122.1(11)
01	C1	N1	128.6(12)
N2	C1	N1	109.3(10)
C1	N2	N3	107.0(8)
C2	N1	C1	106.0(10)
F4	Sb1	F6	90.5(5)
F4	Sb1	F5	89.2(4)
F6	Sb1	F5	89.4(4)
F4	Sb1	F3	94.4(5)
F6	Sb1	F3	175.1(6)
F5	Sb1	F3	91.0(4)
F4	Sb1	F2	90.5(5)
F6	Sb1	F2	89.4(5)
F5	Sb1	F2	178.8(7)
F3	Sb1	F2	90.2(5)
F4	Sb1	F1	176.9(6)
F6	Sb1	F1	86.5(5)
F5	Sb1	F1	91.1(4)
F3	Sb1	F1	88.6(5)
F2	Sb1	F1	89.0(5)
F9	Sb2	F11	91.8(4)
F9	Sb2	F7	89.8(5)
F11	Sb2	F7	90.4(4)
F9	Sb2	F12	178.2(6)
F11	Sb2	F12	89.1(4)
F7	Sb2	F12	91.8(5)
F9	Sb2	F8	89.4(5)
F11	Sb2	F8	178.2(6)

F7	Sb2	F8	90.9(5)
F12	Sb2	F8	89.7(5)
F9	Sb2	F10	88.8(5)
F11	Sb2	F10	88.9(4)
F7	Sb2	F10	178.5(6)
F12	Sb2	F10	89.6(5)
F8	Sb2	F10	89.7(5)

Table 23: Anisotropic atomic displacement parameters (Å²) for $[C_2N_3H_3(OH)_2][(SbF_6)_2] \cdot 2HF$.

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C2	0.009(5)	0.020(6)	0.009(5)	-0.002(4)	-0.002(4)	0.000(4)
N3	0.014(3)	0.017(3)	0.012(3)	0.001(2)	-0.004(3)	-0.001(2)
C1	0.024(7)	0.007(4)	0.015(6)	-0.006(4)	0.010(5)	0.002(4)
N2	0.013(3)	0.014(3)	0.016(3)	0.002(2)	0.001(3)	-0.002(2)
N1	0.021(4)	0.013(3)	0.011(3)	0.000(3)	0.005(3)	0.005(3)
01	0.017(3)	0.016(3)	0.018(3)	0.004(2)	0.002(2)	-0.002(2)
02	0.015(3)	0.025(3)	0.016(3)	0.003(2)	-0.001(2)	0.000(2)
Sb1	0.0105(4)	0.0104(4)	0.0100(4)	0.0000(4)	0.0020(3)	0.0001(4)
F1	0.0174(11	0.0181(11	0.0113(10	0.004(3)	-0.0007(9)	0.007(3)
)))			
F2	0.012(4)	0.011(4)	0.017(4)	-0.001(4)	0.002(3)	-0.001(4)
F3	0.0131(10	0.0196(11	0.0180(12	0.004(3)	0.0067(9)	0.003(3)
)))			
F4	0.013(3)	0.017(3)	0.012(4)	0.004(3)	0.001(3)	-0.001(2)
F5	0.022(4)	0.007(3)	0.017(4)	0.000(4)	0.002(3)	0.003(4)
F6	0.012(4)	0.019(4)	0.016(4)	0.000(2)	0.007(3)	-0.003(3)
Sb2	0.0113(4)	0.0093(4)	0.0102(4)	-0.0002(4)	0.0023(3)	-0.0004(4)
F7	0.0174(11	0.0181(11	0.0113(10	0.004(3)	-0.0007(9)	0.007(3)
)))			
F8	0.021(4)	0.008(4)	0.016(5)	0.004(3)	0.004(4)	-0.001(4)
F9	0.0131(10	0.0196(11	0.0180(12	0.004(3)	0.0067(9)	0.003(3)
)))			
F10	0.016(4)	0.030(4)	0.007(4)	0.000(3)	-0.002(3)	-0.002(3)
F11	0.026(5)	0.012(3)	0.020(4)	-0.001(5)	0.010(4)	0.001(5)
F12	0.016(4)	0.017(4)	0.013(3)	0.001(2)	0.005(3)	-0.001(3)

F13	0.023(4)	0.028(3)	0.026(4)	0.016(3)	0.012(3)	0.006(3)
F14	0.024(4)	0.035(4)	0.021(3)	-0.008(3)	0.008(3)	-0.006(3)

Table 24: Comparison of bond le	engths (Å) of urazole, [$[C_2N_3H_3O(OH)]$ and	$[(C_2N_3H_3(OH)_2].$
---------------------------------	--------------------------	------------------------	-----------------------

C ₂ N ₃ H ₃	O ₂ ^[11]		[C ₂ N ₃ H	₃O(OH)]		[C ₂ N ₃ H	₃ (OH) ₂]	
02	C2	1.237(1)	02	C2	1.233(3)	02	C2	1.282(3)
01	C1	1.232(1)	01	C1	1.284(3)	01	C1	1.278(3)
N1	C1	1.378(1)	N1	C1	1.347(3)	N1	C1	1.355(3)
N1	C2	1.380(1)	N1	C2	1.389(3)	N1	C2	1.354(4)
N3	C2	1.354(1)	N3	C2	1.342(3)	N3	C2	1.316(3)
N2	C1	1.367(1)	N2	C1	1.315(3)	N2	C1	1.308(4)
N3	N2	1.410(1)	N3	N2	1.380(3)	N3	N2	1.372(4)

4. NMR data

4.1 Urazole

NMR (*a*HF, 20 ° C) (ppm): δ (¹H) = 5.33 (N-H); δ (¹⁴N) = -244.69; δ (¹³C) = 151.75.

14 N - C ₂ N ₃ O ₂ H ₃		
	Parameter Title Origin Instrument Solvent Temperature Experiment Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Acquisition Time Acquisition Time Spectral Width Nucleus Acquired Size Spectral Width	Value an4 JEOL ECX400 aHF 20 °C 1D 20000 56.0 0.2000 0.4260 2020-09-03T20:18:24 28.890 15384.6 14N 8192 13108
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -260 -280	-300 -320 -340	-360 -380 -400
ft (ppm)		
130 0000		
¹⁰ C - C ₂ N ₃ O ₂ H ₃		
(CD ₃) ₂ CO	Parameter Title Origin Instrument Solvent Experiment Number of Scans Receiver Gain Releaxation Delay Pulse Width Acquisition Date Spectrometer Frequency Spectral Width Nucleus Acquired Size Spectral Size	Value an4 JEOL ECX400 aHF 20°C 1D 54.0 2.6667 2.6667 2.6667 2.000 2.6667 100.53 30303.0 100.53 30303.0 13C 32768 52430
		(CD ₃₎₂ CO

T			· · ·																						
50	240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
00	240	200	220	210	200	100	100		100	100	140	100	120		100	00	00	10	00	00	40	00	20	10	
												f1 (r	(mac												

4.2 [C₂N₃H₃O(OH)][SbF₆]

NMR (*a*HF, 25 ° C) (ppm): $\delta^{(14}N) = -246.67$; $\delta^{(13}C) = 151.60$.

¹³ C - [C ₂ N ₃ H ₃ O(OH)][(S	8bF ₆)]	
(CD _a	Parameter Title Origin Instrument Solvent Temperature Experiment Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Acquisition Time Acquisition Tate Spectrometer Frequency Spectral Width Nucleus Acquired Size Spectral Size	Value AN_390 JEOL ECX400 aHF 25 °C 1D 10000 50.0 1.0000 2.6667 0.6661 2020-09-22T00:13:57 10.53 30303.0 13C 32768 52430
		(CD ₃₎₂ CO
unnander freisenspischaften Albenheimen Auflichten Bereisen auf eine Bereisen auf die Bereisen auf die Bereisen Bereisen auf die Bereisen auf die Bereisen auf die Bereisen auf die Bereisen Auf die Bereisen auf die Bere Auf die Bereisen auf die Be	¹ 001000000000000000000000000000000000) Would an a state of the state

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1(ppm) $4.3 [C_2 N_3 H_3 (OH)_2] [(SbF_6)_2]$

NMR (aHF, -40 to -30 ° C) (ppm): δ (¹H) = 10.09 (OH⁺); δ (¹³C) = 151.12.

NMR (*a*HF, 25 ° C) (ppm): δ (¹H) = 10.17 (OH⁺); δ (¹⁴N) = -241.55.

5.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0. fl(ppm)

13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0. fl(ppm)

14 N - [C ₂ N ₃ H ₃ (OH) ₂][(SbF ₆) ₂]		
- - - -	Parameter	Value
5	Title	AN 389
	Origin	JEOI
	Instrument	ECX400
	Solvent	aHF
	Temperature	25 °C
	Experiment	1D
	Number of Scans	25000
	Receiver Gain	56.0
	Relaxation Delay	0.2000
	Pulse Width	28,9000
		0.4535
	Acquisition Date	2020-09-14T18-06-29
	Spectrometer Erequency	2020-03-14110.00.23
	Spectrol Width	14450.0
	Spectral Wider	14450.5
	Nucleus	14IN
	Acquired Size	0192
	Spectral Size	13108
historen helen van de generaliser waarde generaliser waarde en weken wat waarde wat de generaliser waarde waard	halowangen-hourist-halafreed	halkiyuhaandayahyanaa
-50 -100 -150 -200 -250 -300 -350	-400	-450

5. Quantum chemical calculations

5.1 Urazole

Figure 11: Optimized structure of urazole.

E(RB3LYP) = -392.721057950 Hartree

Standard orientation:

Center	Atomic		tomic	Coordinate	s (Angstroms)
Number	Number		Туре	X Y	Z
1	6	0	-1.164644	-0.179483	0.029597
2	6	0	1.164643	-0.179478	-0.029562
3	8	0	-2.336473	-0.561909	-0.012535
4	8	0	2.336472	-0.561930	0.012389
5	7	0	-0.000023	-0.952382	0.000133
6	1	0	-0.000060	-1.957373	-0.000131

7	7	0	0.711826	1.147772	-0.104738
8	1	0	1.228523	1.849621	0.403437
9	7	0	-0.711816	1.147852	0.104813
10	1	0	-1.228358	1.849535	-0.403806

Figure 12: NPA charges of urazole.

Figure 13: Molecular 0.0004 bohr⁻³ 3D isosurfaces with mapped electrostatic potential of urazole (color scale ranging from -0.05 a.u. [red] to 0.05 a.u. [blue]).

5.2 [C₂N₃H₃O(OH)]

Figure 14: Optimized structure of $[C_2N_3H_3O(OH)]$.

E(RB3LYP) = -393.037872928 Hartree

Standard orientation:

Center Number	Ator Nu	nic Ato mber	omic Type	Coordinate X Y	s (Angstroms) Z
1	6	0	1.053210	-0.123628	0.014108
2	6	0	-1.239565	-0.182968	-0.012475
3	8	0	-2.373394	-0.610105	0.013912
4	7	0	-0.008327	-0.940175	-0.009509
5	1	0	0.031146	-1.950377	0.011321
6	7	0	-0.782591	1.140740	-0.064120
7	1	0	-1.307821	1.935941	0.270947
8	7	0	0.628259	1.147241	0.036081

9	1	0	1.153562	1.986428	-0.161648
10	8	0	2.293022	-0.591255	-0.008280

11 1 0 3.022831 0.043829 0.087361

Figure 15: NPA charges of $[C_2N_3H_3O(OH)]$.

Figure 16: Molecular 0.0004 bohr⁻³ 3D isosurfaces with mapped electrostatic potential of $[C_2N_3H_3O(OH)]$ (color scale ranging from 0.07 a.u. [red] to 0.24 a.u. [blue]).

5.3 [C₂N₃H₃(OH)₂]

Figure 17: Optimized structure of $[C_2N_3H_3(OH)_2]$.

E(RB3LYP) = -393.196301560 Hartree

Standard orientation:

Center	Ator	nic Ato	omic	Coordinate	es (Angstroms)
Number	nu	mber	туре	A 1	Z
1	6	0	-1.121230	-0.116805	0.000012
2	6	0	1.121244	-0.116701	-0.000076
3	7	0	0.000047	-0.905603	0.000038
4	1	0	0.000173	-1.925780	0.000115
5	7	0	0.701470	1.161503	-0.000053
6	1	0	1.228036	2.032093	0.000609
7	7	0	-0.701547	1.161476	0.000099
8	1	0	-1.228171	2.032027	-0.000524

9	8	0	-2.301321	-0.651002	0.000035
10	1	0	-3.125271	-0.121590	-0.000443
11	8	0	2.301326	-0.650966	0.000005
12	1	0	3.125313	-0.121596	-0.000278

Figure 18: NPA charges of $[C_2N_3H_3(OH)_2]$.

Figure 19: Molecular 0.0004 bohr⁻³ 3D isosurfaces with mapped electrostatic potential of $[C_2N_3H_3(OH)_2]$ (color scale ranging from 0.26 a.u. [red] to 0.38 a.u. [blue]).

5.4 NPA charges

Figure 20: NPA charges of urazole and its protonated derivatives.

Figure 21: Difference in NPA charges of the respective protonated species vs urazole.

Figure 22: NPA charges of parabanic acid and its protonated derivatives.

Figure 23: Difference in NPA charges of the respective protonated species vs parabanic acid.

6. Literature

- [1] *MestReNova 12.0.2*; Mestrelab Research S.L., **2018**.
- [2] Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171.38.46, Rigaku Corporation, Oxford, UK, 2015.
- [3] G. M. Sheldrick, *Acta Crystallogr. A* **2015**, *71*, 3. DOI: 10.1107/S2053273314026370.
- [4] G. M. Sheldrick, *Acta Crystallogr. C***2015**, *71*, 3. DOI: 10.1107/S2053229614024218.
- [5] L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837. DOI: 10.1107/S0021889899006020.
- [6] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7. DOI: 10.1107/S0021889802022112.
- [7] SCALE3 ABSPACK, An Oxford Diffraction Program, Oxford Diffraction Ltd, UK,2005.
- [8] *Mercury 2020.2.0 (Build 290188)*, CCDC, **2020**.
- [9] *Gaussian 16*, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.

- [10] *Gaussian 09*, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [11] F. Belaj, Acta Cryst. 1992, 48, 1088–1090.