## **Supporting Information**

# Palladium/Norbornene Cooperative Catalysis Triple Functionalization: Carbamoylation/Double-annulation of (Hetero)aryl Iodides

Yi-Xin Chai,<sup>*a*</sup> Yu-Fan Yang,<sup>*a*</sup> Feng-Yu Zhang,<sup>*a*</sup> Ji-Yan Zhao,<sup>*a*</sup> Ya-Ting Wang,<sup>*a*</sup> Yanmei Chen,<sup>*c*</sup> Yuan-Yuan Sun,<sup>*a*</sup> Jin-Heng Li,<sup>*b*,\*</sup> Yan-Ping Zhu<sup>*a*,\*</sup>

<sup>*a*</sup> School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Shandong, Yantai, 264005, P. R. China. E-mail: chemzyp@foxmail.com; chemzyp@ytu.edu.cn

<sup>b</sup> State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.; orcid.org/0000-0001-7215-7152; E-mail: jhli@hnu.edu.cn.

<sup>c</sup> Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, P.R. China. E-mail: cingym@163.com

## **Table of Contents**

| 1. | General information                                            | S2  |
|----|----------------------------------------------------------------|-----|
| 2. | Experimental Procedures                                        | S2  |
| 3. | Molecular structure and crystallographic data                  | S9  |
| 4. | Characterization Data for Products                             | S11 |
| 5. | <sup>1</sup> H-NMR and <sup>13</sup> C-NMR Spectra of Products | S36 |

### **1.** General information

**Materials and General Experimental:** 2-iodobiphenyl, tri(2-furyl)phosphine and cesium carbonate were purchased from Shanghai Shaoyuan Co. Ltd. Palladium acetate was purchased from Energy Chemical. Unless stated otherwise, all solvents and commercially available reagents were obtained from commercial suppliers and used without further purification. In addition, petroleumether (b.p. 60-90 °C), which was used for column chromatography, was distilled prior to use. Non-commercial starting materials were prepared as described below or according to literature procedures. Analytical thin layer chromatography (TLC) was performed using pre-coated silica gel HF254 glass plates. Column chromatography was performed using silica gel (200-300 mesh).

**Instrumentation:** Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Advance 400 MHz spectrometer at ambient temperature using the non or partly deuterated solvent as internal standard (<sup>1</sup>H:  $\delta$  7.26 ppm and <sup>13</sup>C{1H}:  $\delta$  77.0 ppm for CDCl<sub>3</sub>. Chemical shifts ( $\delta$ ) are reported in ppm, relative to the internal standard of tetramethylsilane (TMS). The coupling constants (*J*) are quoted in hertz (Hz). Resonances are described as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) or combinations thereof. High resolution mass spectra were obtained on Thermo Scientific Q-Exactive (ESI mode, Q-Exactive Orbitrap MS system). Melting points were determined using SGW X-4 apparatus and not corrected. The X-ray diffraction data for the crystallized compound were collected on a Bruker Smart APEX CCD area detector diffractometer (graphite monochromator, Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å) at 296(2) K.

### 2. Experimental Procedures

#### 2.1 General procedure for the catalytic process (3aa as an example)

A 25 mL pressure vial was charged with 2-iodobiphenyl (51 mg, 0.2 mmol, 1.0 equiv), carbamic chloride (89 mg, 0.4 mmol, 2.0 equiv), Pd(OAc)<sub>2</sub> (4.5 mg, 0.02 mmol, 10 mol%), TFP (9 mg, 0.04 mmol, 20 mol%), Cs<sub>2</sub>CO<sub>3</sub> (261 mg, 0.8 mmol, 4.0 equiv) and N<sub>2</sub> (56 mg, 0.2 mmol, 1.0 equiv) in toluene (2.0 ml, 0.1 M) were added. The reaction was stirred at 80 °C in heating mantle under argon atmosphere for 24 h. After the reaction was completed (monitored by TLC), and 50 ml of water was added to the mixture, which was then extracted three times with EtOAc ( $3 \times 50$  mL). The combined organic phase was dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude residues were purified by column chromatography (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1) to obtain the corresponding products.

#### 2.2 Reaction Optimization

Our initial trial commenced with the reaction of 2-iodobiphenyl 1a with carbamic chloride 2a in the presence of palladium acetate, norbornene and tri(2-furyl)phosphine (TFP). The selected results are summarized in Table S1. To our delight, when the

reaction was performed with  $Cs_2CO_3$  as the base, DMAc, MeCN or THF was used respectively at 100 °C for 24 h, The reaction afforded the target products in moderate yields. (Table S1, entry 1-3). Yield significantly decreased when the solvent was switched to NMP or DCM (entries 4 and 5). To our excitement, it was observed that toluene provided better result of the target product (entry 6). With Toluene as the most effective solvent, we went on to test other reaction conditions. Temperature screening proved that 80°C was the better choice, thus providing **4aa** with 51% yield (entry 8). Replacing  $Cs_2CO_3$  with several bases did not show superior results (entries 10-12). More gratifyingly, further optimization shows that using TFP as a phosphine ligand instead of PPh<sub>3</sub> did enhance the process to yield **4aa** in 78% (entry 17). Furthermore, we observed that NBE is a very essential and unique cocatalyst in the Pd/NBE catalysis. Thus, we explored the effects of different norbornene derivatives on the reaction (entries 18-27). Fortunately, we were pleasant to find that when **N**<sub>10</sub> norbornene derivatives was added to the reaction system, the yield of the product reached 87%.

|       | (                | 1a +                            | O<br>N<br>Bn<br>Za<br>Solve<br>N<br>D<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solve<br>Solv | c) <sub>2</sub> (10 mol%)<br>d (20 mol%)<br>(1.0 equiv)<br>(4.0 equiv)<br>ent, 100 °C | N Bn<br>4aa                                                                                                                                                                   |           |
|-------|------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|       | N <sub>1</sub>   | (Endo isomer                    | $P = \begin{cases} 2\text{-Naphth, } N_2 \\ 4\text{-Me-Ph, } N_4 \\ 2,3\text{-Me}_2\text{-Ph, } N_6 \\ 4\text{-F-Ph, } N_8 \\ 4\text{-OMe-Bn, } N_{10} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>H<br>H<br>(Exo isomerism)                                                        | $R = \begin{cases} 2\text{-Naphth, } N_{3} \\ 4\text{-Me-Ph, } N_{5} \\ 2,3\text{-Me}_{2}\text{-Ph, } N_{7} \\ 4\text{-F-Ph, } N_{9} \\ 4\text{-OMe-Bn, } N_{11} \end{cases}$ |           |
| entry | Ligand           | Base                            | NBEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | temp(℃)                                                                               | solvent                                                                                                                                                                       | yield (%) |
| 1     | PPh <sub>3</sub> | Cs <sub>2</sub> CO <sub>3</sub> | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                   | DMAc                                                                                                                                                                          | 10        |
| 2     | PPh <sub>3</sub> | $Cs_2CO_3$                      | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                   | MeCN                                                                                                                                                                          | 14        |
| 3     | PPh <sub>3</sub> | $Cs_2CO_3$                      | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                   | THF                                                                                                                                                                           | 35        |
| 4     | PPh <sub>3</sub> | $Cs_2CO_3$                      | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                   | NMP                                                                                                                                                                           | 5         |
| 5     | PPh <sub>3</sub> | $Cs_2CO_3$                      | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                   | DCM                                                                                                                                                                           | 12        |
| 6     | PPh <sub>3</sub> | $Cs_2CO_3$                      | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                   | Toluene                                                                                                                                                                       | 50        |
| 7     | PPh <sub>3</sub> | $Cs_2CO_3$                      | $\mathbf{N}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90                                                                                    | Toluene                                                                                                                                                                       | 52        |
| 8     | PPh <sub>3</sub> | $Cs_2CO_3$                      | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                    | Toluene                                                                                                                                                                       | 51        |
| 9     | PPh <sub>3</sub> | $Cs_2CO_3$                      | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110                                                                                   | Toluene                                                                                                                                                                       | 46        |
| 10    | PPh <sub>3</sub> | $K_2CO_3$                       | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                    | Toluene                                                                                                                                                                       | 33        |
| 11    | PPh <sub>3</sub> | K <sub>3</sub> PO <sub>4</sub>  | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                    | Toluene                                                                                                                                                                       | 20        |
| 12    | PPh <sub>3</sub> | KOAc                            | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                    | Toluene                                                                                                                                                                       | 18        |
| 13    | $P(4-F-Ph)_3$    | $Cs_2CO_3$                      | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                    | Toluene                                                                                                                                                                       | 35        |
| 14    | $P(4-Cl-Ph)_3$   | $Cs_2CO_3$                      | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                    | Toluene                                                                                                                                                                       | 38        |
| 15    | $P(4-Me-Ph)_3$   | $Cs_2CO_3$                      | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                    | Toluene                                                                                                                                                                       | 46        |
| 16    | P(4-MeO-Ph)      | $_3Cs_2CO_3$                    | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                    | Toluene                                                                                                                                                                       | 43        |
| 17    | TFP              | $Cs_2CO_3$                      | $N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                    | Toluene                                                                                                                                                                       | 78        |
| 18    | TFP              | $Cs_2CO_3$                      | $N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                    | Toluene                                                                                                                                                                       | 77        |
| 19    | TFP              | $Cs_2CO_3$                      | $N_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                    | Toluene                                                                                                                                                                       | 69        |

#### Table S1 Optimization of the reaction conditions<sup>*a*, *b*</sup>

| 20 | TED | CarCO                           | N.       | 20 | Toluono  | 72 |  |
|----|-----|---------------------------------|----------|----|----------|----|--|
| 20 | IΓΓ | $Cs_2CO_3$                      | 184      | 00 | Toluelle | 15 |  |
| 21 | TFP | $Cs_2CO_3$                      | $N_5$    | 80 | Toluene  | 59 |  |
| 22 | TFP | $Cs_2CO_3$                      | $N_6$    | 80 | Toluene  | 64 |  |
| 23 | TFP | $Cs_2CO_3$                      | $N_7$    | 80 | Toluene  | 43 |  |
| 24 | TFP | $Cs_2CO_3$                      | $N_8$    | 80 | Toluene  | 76 |  |
| 25 | TFP | $Cs_2CO_3$                      | $N_9$    | 80 | Toluene  | 55 |  |
| 26 | TFP | Cs <sub>2</sub> CO <sub>3</sub> | N10      | 80 | Toluene  | 87 |  |
| 27 | TFP | $Cs_2CO_3$                      | $N_{11}$ | 80 | Toluene  | 48 |  |

<sup>*a*</sup> Reaction conditions: **1a** (0.2 mmol), **2a** (2.0 equiv.), Pd(OAc)<sub>2</sub> (10 mol%), ligand (20 mol%), Base (4.0 equiv.) and NBEs (1.0 equiv.) were heated in solvent (2 mL) for 24 h under Ar atmosphere. <sup>*b*</sup> Isolated yields.

Next, we tried to reduce the amount of NBE equivalent to observe the effect on product yield. As shown in Table S2, the experimental results indicate that reducing the equivalent of NBE leads to residual raw material **1a** and a decrease in product yield. Some by-products **6e** in the reaction are formed through the coupling of NBE and **1a**. The formation of **6e** was confirmed by the analysis of HRMS and NMR.

#### Table S2 Optimization of the N<sub>10</sub> equiv.<sup>*a*, *b*</sup>



<sup>*a*</sup> Reaction conditions: **1a** (0.2 mmol), **2a** (2.0 equiv.),  $Pd(OAc)_2$  (10 mol%), TFP (20 mol%),  $Cs_2CO_3$  (4.0 equiv.) and  $N_{10}$  (x equiv.) were heated in toluene (2 mL) for 24 h under Ar atmosphere. <sup>*b*</sup> Isolated yields.



Figure S1. The HRMS results for the 6e.

#### 2.3 Synthesis of starting materials



#### Scheme S1 Synthesis of carbamic chloride

**General procedure A:** Alkyl halide (10 mmol, 1.0 equiv) was added slowly to a solution of the corresponding amine (25 mmol, 2.5 equiv) in  $CH_2Cl_2$  (15 mL, 0.3 M) at 0 °C. The mixture was allowed to stir at room temperature for 24 h, the reaction was quenched with water and the resulting mixture was extracted with dichloromethane. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated. Pure allylamines products were obtained by column chromatography (silica gel, with a mixture of petroleum ether/ethyl acetate as eluent). The pure allylamines products was dissolved in dichloromethane (15 mL, 0.3 M) and cooled to 0 °C. Then pyridine (20 mmol, 2.0 equiv) was added followed by triphosgene (5 mmol, 0.5 equiv). The reaction was warmed to room temperature and stirred until TLC indicated completion. The reaction was dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The crude starting material was purified by flash column chromatography in an ethyl acetate / petroleum ether mixture to give the desired product.



Scheme S2 Synthesis of iodobiphenyl derivative

General procedure B: To a 100 mL ground flask equipped with PTFE stopcock on side-arm were added a magnetic stir-bar, substituted 2-iodoaniline (10.0 mmol), substituted phenylboronic acid (12.0 mmol, 1.2 equiv), and K<sub>2</sub>CO<sub>3</sub> (25 mmol, 2.5 equiv). The flask was equipped with a rubber septum and sealed up. The reaction flask was evacuated and back-filled with argon, followed by the addition of acetone (18.0 mL) and water (24.0 mL) via a syringe. The reaction mixture was stirred and heated to 65 °C. A solution of Pd(OAc)<sub>2</sub> (0.02 mmol, 20 mol %) in acetone (2.0 mL) was then introduced to the reaction mixture via a syringe. After the reaction mixture was stirred at 65 °C overnight, it was allowed to cool to room temperature. The reaction mixture was extracted with EtOAc (4×40 mL), and the combined organic phases were washed with 50 mL of water. The organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo. The crude product was purified by silica gel column chromatography (petroleum ether/EtOAc) to give the corresponding substituted 2aminobiphenyls. Subsequently, 2ml of concentrated hydrochloric acid/water (1:1) was added to the obtained product (2 mmol, 1.0 equiv) at room temperature and stirred for 15 min, then 1ml of sodium nitrite solution (4 mmol, 2 equiv) was added dropwise at -5 °C, and stirring was continued for 20 min. After that, 1mL KI solution (5 mmol, 2.5 equiv) was added dropwise and stirred for 15 min, and then turned to room temperature

overnight. After the reaction is completed, add NaHCO<sub>3</sub> solution to the reaction solution and adjust it to pH = 9-10, and 50 ml of water was added to the mixture, which was then extracted three times with EtOAc (3 × 50 mL). The combined organic phases were washed with saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution and H<sub>2</sub>O. After drying over Na<sub>2</sub>SO<sub>4</sub> and concentration under reduced pressure, the crude product was purified by column chromatography using ethyl acetate/petroleum ether mixture.

#### **2.4 Controlled Experiment**





A 25 mL pressure vial was charged with 2-iodobiphenyl (51 mg, 0.2 mmol, 1.0 equiv), benzoyl cyanide (89 mg, 0.4 mmol, 2.0 equiv), ethyl acrylate (40 mg, 0.4 mmol, 2.0 equiv), Pd(OAc)<sub>2</sub> (4.5 mg, 0.02 mmol, 10 mol%), TFP (9 mg, 0.04 mmol, 20 mol%), Cs<sub>2</sub>CO<sub>3</sub> (261 mg, 0.8 mmol, 4.0 equiv) and N<sub>10</sub> (56 mg, 0.2 mmol, 1.0 equiv) in toluene (2.0 ml, 0.1 M) were added. The reaction was stirred at 80 °C in heating mantle under argon atmosphere for 24 h. After the reaction was completed (monitored by TLC), and 50 ml of water was added to the mixture, which was then extracted three times with EtOAc ( $3 \times 50$  mL). The combined organic phase was dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude residues were purified by column chromatography using ethyl acetate/petroleum ether mixture to obtain the corresponding products **4aa** (53%) and **5a** (29%).





A 25 mL pressure vial was charged with 2-iodobiphenyl (51 mg, 0.2 mmol, 1.0 equiv), benzoyl cyanide (89 mg, 0.4 mmol, 2.0 equiv), styrene (41 mg, 0.4 mmol, 2.0 equiv), Pd(OAc)<sub>2</sub> (4.5 mg, 0.02 mmol, 10 mol%), TFP (9 mg, 0.04 mmol, 20 mol%), Cs<sub>2</sub>CO<sub>3</sub> (261 mg, 0.8 mmol, 4.0 equiv) and N<sub>10</sub> (56 mg, 0.2 mmol, 1.0 equiv) in toluene (2.0 ml, 0.1 M) were added. The reaction was stirred at 80 °C in heating mantle under argon atmosphere for 24 h. After the reaction was completed (monitored by TLC), and 50 ml of water was added to the mixture, which was then extracted three times with EtOAc (3 × 50 mL). The combined organic phase was dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude residues were purified by column

chromatography using ethyl acetate/petroleum ether mixture to obtain the corresponding products **4aa**.



Scheme S5 With phenyl boronic acid as trapping reagent

A 25 mL pressure vial was charged with 2-iodobiphenyl (51 mg, 0.2 mmol, 1.0 equiv), benzoyl cyanide (89 mg, 0.4 mmol, 2.0 equiv), phenyl boronic acid (49 mg, 0.4 mmol, 2.0 equiv), Pd(OAc)<sub>2</sub> (4.5 mg, 0.02 mmol, 10 mol%), TFP (9 mg, 0.04 mmol, 20 mol%), Cs<sub>2</sub>CO<sub>3</sub> (261 mg, 0.8 mmol, 4.0 equiv) and N<sub>10</sub> (56 mg, 0.2 mmol, 1.0 equiv) in toluene (2.0 ml, 0.1 M) were added. The reaction was stirred at 80 °C in heating mantle under argon atmosphere for 24 h. After the reaction was completed (monitored by TLC), and 50 ml of water was added to the mixture, which was then extracted three times with EtOAc ( $3 \times 50$  mL). The combined organic phase was dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude residues were purified by column chromatography using ethyl acetate/petroleum ether mixture to obtain the corresponding products **4aa** and the reaction remaining **1a** 26%.





A 25 mL pressure vial was charged with 2-iodobiphenyl (51 mg, 0.2 mmol, 1.0 equiv), benzoyl cyanide (89 mg, 0.4 mmol, 2.0 equiv), isopropyl alcohol (24 mg, 0.4 mmol, 2.0 equiv),  $Pd(OAc)_2$  (4.5 mg, 0.02 mmol, 10 mol%), TFP (9 mg, 0.04 mmol, 20 mol%),  $Cs_2CO_3$  (261 mg, 0.8 mmol, 4.0 equiv) and  $N_{10}$  (56 mg, 0.2 mmol, 1.0 equiv) in toluene (2.0 ml, 0.1 M) were added. The reaction was stirred at 80 °C in heating mantle under argon atmosphere for 24 h. After the reaction was completed (monitored by TLC), and

50 ml of water was added to the mixture, which was then extracted three times with EtOAc ( $3 \times 50$  mL). The combined organic phase was dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude residues were purified by column chromatography using ethyl acetate/petroleum ether mixture to obtain the corresponding products **4aa** and the reaction remaining **1a** 24%.



Scheme S7 Reaction of 2-iodobiphenyl with allyl(benzyl)carbamic chloride A 25 mL pressure vial was charged with 2-iodobiphenyl (51 mg, 0.2 mmol, 1.0 equiv), allyl(benzyl)carbamic chloride (54 mg, 0.4 mmol, 2.0 equiv), Pd(OAc)<sub>2</sub> (4.5 mg, 0.02 mmol, 10 mol%), TFP (9 mg, 0.04 mmol, 20 mol%), Cs<sub>2</sub>CO<sub>3</sub> (261 mg, 0.8 mmol, 4.0 equiv) and N<sub>10</sub> (56 mg, 0.2 mmol, 1.0 equiv) in toluene (2.0 ml, 0.1 M) were added. The reaction was stirred at 80 °C in heating mantle under argon atmosphere for 24 h. After the reaction was completed (monitored by TLC), and 50 ml of water was added to the mixture, which was then extracted three times with EtOAc (3 × 50 mL). The combined organic phase was dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude residues were purified by column chromatography using ethyl acetate/petroleum ether mixture to obtain the corresponding products **6a**.



Scheme S8 Reaction of 2-iodobiphenyl with benzyl(3-methylbut-2-en-1-yl)carbamic chloride.

A 25 mL pressure vial was charged with 2-iodobiphenyl (51 mg, 0.2 mmol, 1.0 equiv), benzyl(3-methylbut-2-en-1-yl)carbamic chloride (94 mg, 0.4 mmol, 2.0 equiv), Pd(OAc)<sub>2</sub> (4.5 mg, 0.02 mmol, 10 mol%), TFP (9 mg, 0.04 mmol, 20 mol%), Cs<sub>2</sub>CO<sub>3</sub> (261 mg, 0.8 mmol, 4.0 equiv) and N<sub>10</sub> (56 mg, 0.2 mmol, 1.0 equiv) in toluene (2.0 ml, 0.1 M) were added. The reaction was stirred at 80 °C in heating mantle under argon atmosphere for 24 h. After the reaction was completed (monitored by TLC), and 50 ml of water was added to the mixture, which was then extracted three times with EtOAc (3 × 50 mL). The combined organic phase was dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude residues were purified by column

chromatography using ethyl acetate/petroleum ether mixture to obtain the corresponding products **6b**.



Scheme S9 Reaction of 2-iodobiphenyl with benzyl(cyclohex-2-en-1-yl)carbamic chloride

A 25 mL pressure vial was charged with 2-iodobiphenyl (51 mg, 0.2 mmol, 1.0 equiv), 5-(benzyl(chlorocarbonyl)amino)cyclohex-3-en-1-ylium (99 mg, 0.4 mmol, 2.0 equiv), Pd(OAc)<sub>2</sub> (4.5 mg, 0.02 mmol, 10 mol%), TFP (9 mg, 0.04 mmol, 20 mol%), Cs<sub>2</sub>CO<sub>3</sub> (261 mg, 0.8 mmol, 4.0 equiv) and N<sub>10</sub> (56 mg, 0.2 mmol, 1.0 equiv) in toluene (2.0 ml, 0.1 M) were added. The reaction was stirred at 80 °C in heating mantle under argon atmosphere for 24 h. After the reaction was completed (monitored by TLC), and 50 ml of water was added to the mixture, which was then extracted three times with EtOAc ( $3 \times 50$  mL). The combined organic phase was dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude residues were purified by column chromatography using ethyl acetate/petroleum ether mixture to obtain the corresponding products **6c**.



Scheme S10 Reaction of 2-iodobiphenyl with methyl(phenyl)carbamic chloride A 25 mL pressure vial was charged with 2-iodobiphenyl (51 mg, 0.2 mmol, 1.0 equiv), methyl(phenyl)carbamic chloride (68 mg, 0.4 mmol, 2.0 equiv), Pd(OAc)<sub>2</sub> (4.5 mg, 0.02 mmol, 10 mol%), TFP (9 mg, 0.04 mmol, 20 mol%), Cs<sub>2</sub>CO<sub>3</sub> (261 mg, 0.8 mmol, 4.0 equiv) and N<sub>10</sub> (56 mg, 0.2 mmol, 1.0 equiv) in toluene (2.0 ml, 0.1 M) were added. The reaction was stirred at 80 °C in heating mantle under argon atmosphere for 24 h. After the reaction was completed (monitored by TLC), and 50 ml of water was added to the mixture, which was then extracted three times with EtOAc (3 × 50 mL). The combined organic phase was dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude residues were purified by column chromatography using ethyl acetate/petroleum ether mixture to obtain the corresponding products **6d**.

## 3. Molecular structure and crystallographic data

The purified compound **4ad** is dissolved in dichloromethane and petroleum ether, and placed in a dark cabinet to slowly evaporate. After several days, a colorless bulk crystal is obtained. The X-ray crystal-structure determinations were obtained on a Bruker Smart APEX CCD area detector diffractometer at 293 K.



Figure S2 X-ray crystal structure of compound 4ad

| Table S3. ( | Crystal data | and structure | refinement for | compound | 4ad |
|-------------|--------------|---------------|----------------|----------|-----|
|-------------|--------------|---------------|----------------|----------|-----|

| Identification code   | CCDC: 2411797                                   |
|-----------------------|-------------------------------------------------|
| Empirical formula     | C <sub>25</sub> H <sub>22</sub> NO <sub>2</sub> |
| Formula weight        | 368.459                                         |
| Temperature/K         | 293 K                                           |
| Crystal system        | monoclinic                                      |
| Space group           | P2 <sub>1</sub> /c                              |
| a/Å                   | 10.5319(14)                                     |
| b/Å                   | 6.0342(8)                                       |
| c/Å                   | 30.383(4)                                       |
| α/°                   | 90                                              |
| β/°                   | 93.080(5)                                       |
| γ/°                   | 90                                              |
| Volume/Å <sup>3</sup> | 1928.1(4)                                       |
| Z                     | 4                                               |
| $ ho_{calc}g/cm^3$    | 1.269                                           |
| $\mu/mm^{-1}$         | 0.080                                           |
| F(000)                | 780.5                                           |

| Crystal size/mm <sup>3</sup>                | 0.28 x 0.26 x 0.25                                   |
|---------------------------------------------|------------------------------------------------------|
| Radiation                                   | Mo Ka ( $\lambda = 0.71073$ )                        |
| $2\Theta$ range for data collection/°       | 3.88 to 50.28                                        |
| Index ranges                                | $-12 \le h \le 12, -7 \le k \le 7, -36 \le l \le 36$ |
| Reflections collected                       | 34924                                                |
| Independent reflections                     | $3427 [R_{int} = 0.0946, R_{sigma} = 0.0447]$        |
| Data/restraints/parameters                  | 3427/0/256                                           |
| Goodness-of-fit on F <sup>2</sup>           | 1.073                                                |
| Final R indexes [I>=2σ (I)]                 | $R_1 = 0.0478, wR_2 = 0.1116$                        |
| Final R indexes [all data]                  | $R_1 = 0.0613, wR_2 = 0.1199$                        |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.17/-0.20                                           |

### 4. Characterization Data for Products



5-Benzyl-6a-methyl-5,6,6a,7-tetrahydro-4H-benzo[*ij*]indolo[1,2-*b*][2,6]

**naphthyridin-4-one (3a)**, (silica gel: 200–300 mesh, solvent system: petroleum ether/ ethyl acetate = 10:1-3:1), 36 mg, 48%, white solid, m.p. 136-137 °C. <sup>1</sup>H NMR (500 M Hz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.15 – 7.82 (m, 3H), 7.65 – 7.47 (m, 2H), 7.45 – 7.14 (m, 7H), 6. 43 (s, 1H), 4.84 (dd, *J* = 124.0, 14.5 Hz, 2H), 3.41 (dd, *J* = 174.4, 12.2 Hz, 2H), 2.88 (dd, *J* = 40.0, 15.0 Hz, 2H), 0.95 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 163.9, 136.6, 134.5, 134.1, 134.0, 132.8, 129.7, 128.7, 128.4, 128.0, 127.7, 126.0, 123.6, 12 2.4, 121.2, 120.6, 120.3, 111.1, 102.1, 56.9, 50.8, 34.4, 32.8, 22.0. HR-MS (ESI): calc d for [M+Na]<sup>+</sup> C<sub>26</sub>H<sub>22</sub>N<sub>2</sub>NaO: 401.1624; found: 401.1619.



5-Benzyl-6a-methyl-5,6,6a,7-tetrahydro-4H-benzo[*ij*]pyrrolo[1,2-*b*][2,6] naphthyridin-4-one (3b), (silica gel: 200–300 mesh, solvent system: petroleum ether/ ethyl acetate = 10:1-3:1), 37 mg, 57%, white solid, m.p. 132-134 °C. <sup>1</sup>H NMR (500 M Hz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.96 (d, J = 7.6 Hz, 1H), 7.59 – 7.26 (m, 7H), 7.15 (s, 1H), 6.28 (t, J = 3.2 Hz, 1H), 6.04 (s, 1H), 4.83 (dd, J = 118.9, 14.5 Hz, 2H), 3.39 (dd, J = 185.0, 1 2.2 Hz, 2H), 2.72 (dd, J = 45.0, 15.0 Hz, 2H), 0.99 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDC l<sub>3</sub>)  $\delta$  (ppm) 163.6, 136.7, 133.8, 131.5, 128.6, 128.4, 128.0, 127.7, 126.1, 124.1, 118.1, 114.8, 110.1, 107.5, 57.0, 50.8, 33.2, 32.4, 23.1. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>2</sub> 2H<sub>20</sub>N<sub>2</sub>NaO: 351.1468; found: 351.1467.



Ethyl 5-benzyl-6a-methyl-4-oxo-5,6,6a,7-tetrahydro-4H-benzo[*de*]indolizino[2,3*g*]isoquinoline-13-carboxylate (3c), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 42 mg, 47%, white solid, m.p. 185-187 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.63 (d, J = 9.2 Hz, 1H), 8.22 (d, J = 9.2 Hz, 1H), 8.09 (d, J = 9.0 Hz, 1H), 7.73 (d, J = 6.9 Hz, 1H), 7.46 – 7.25 (m, 6H), 7.01 (dd, J = 9.22, 6.6 Hz, 1H), 6.73 (t, J = 7.4 Hz, 1H), 4.98 (d, J = 14.6 Hz, 1H), 4.70 (d, J = 14.5 H z, 1H), 4.52 – 4.35 (m, 2H), 3.64 (d, J = 12.1 Hz, 1H), 3.25 (d, J = 12.1 Hz, 1H), 2.75 (d, J = 15.4 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H), 1.05 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDC 1<sub>3</sub>)  $\delta$  (ppm) 165.2, 164.4, 139.9, 137.3, 136.8, 131.6, 128.9, 128.6, 128.6, 127.6, 127.2, 127.2, 127.0, 122.1, 121.8, 121.7, 121.0, 120.7, 112.8, 99.9, 59.8, 57.1, 50.6, 35.0, 31. 1, 23.8, 14.5. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>29</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>3</sub>: 473.1836; found: 473. 1840.



Ethyl (E)-2-(5-benzyl-3a-methyl-6-oxo-3a,4,5,6-tetrahydropyrano[4,3,2-de]isoqui

**nolin-2(3H)-ylidene)acetate (3d)**, (silica gel: 200–300 mesh, solvent system: petroleu m ether/ethyl acetate = 10:1-3:1), 20 mg, 26%, white solid, m.p. 80-82 °C. <sup>1</sup>H NMR (4 00 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.80 (dd, J = 7.7, 1.2 Hz, 1H), 7.45 – 7.13 (m, 7H), 5.04 (d, J = 1.6 Hz, 1H), 4.90 (d, J = 14.4 Hz, 1H), 4.63 (d, J = 14.4 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.40 (d, J = 12.2 Hz, 1H), 3.14 (d, J = 12.2 Hz, 1H), 2.49 – 2.41 (m, 1H), 2.2 6 (d, J = 14.2 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.10 (s, 3H). <sup>13</sup>C NMR (101 MHz, CD Cl<sub>3</sub>)  $\delta$  (ppm) 164.2, 163.3, 159.4, 148.5, 136.4, 128.6, 128.6, 127.7, 127.4, 126.7, 123. 1, 120.0, 98.7, 59.7, 56.5, 50.6, 38.3, 30.2, 23.2, 14.2. HR-MS (ESI): calcd for [M+Na] <sup>+</sup> C<sub>23</sub>H<sub>23</sub>NNaO<sub>4</sub>: 400.1519; found: 400.1522.



**2-Benzyl-3a-methyl-2,3,3a,4-tetrahydro-1H-benzo**[*de*]benzo[2,3]benzofuro[7,6*g*]isoquinolin-1-one (3e), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 59 mg, 69%, white solid, m.p. 187-188 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.86 (dd, *J* = 7.9, 1.3 Hz, 1H), 8.21 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.97 – 7.91 (m, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 7.69 – 7.56 (m, 2H), 7.52 – 7.26 (m, 7H), 7.17 (dd, *J* = 7.8, 0.9 Hz, 1H), 4.87 (dd, *J* = 97.3, 14.5 Hz, 2H), 3.44 (dd, *J* = 148.4, 12.2 Hz, 2H), 2.86 (dd, *J* = 110.8, 14.9 Hz, 2H), 0.98 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.3, 156.0, 153.1, 141.2, 136.8, 133.4, 131.4, 128.9, 128.7, 128.6, 128.0, 127.6, 127.4, 127.3, 127.0, 124.2, 123.8, 123.8, 122.9, 120.3, 119.8, 117.9, 111.7, 57.4, 50.7, 40.2, 33.5, 22.0. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>30</sub>H<sub>23</sub>NNaO<sub>2</sub>: 452.1621; found: 452.1615.



**2-Benzyl-3a-methyl-2,3,3a,4-tetrahydro-1H-benzo**[*de*]benzo[4',5']thieno[3',2':5,6] benzo[1,2-g]isoquinolin-1-one (3f), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 54 mg, 61%, white solid, m.p. 198-199 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.53 (dd, *J* = 7.9, 1.2 Hz, 1H), 8.22 – 8.13 (m, 2H), 8.08 (d, *J* = 7.8 Hz, 1H), 7.92 – 7.85 (m, 1H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.42 – 7.27 (m, 8H), 4.86 (dd, *J* = 109.5, 14.5 Hz, 2H), 3.43 (dd, *J* = 172.2, 12.1 Hz, 2H), 2.85 (dd, *J* = 150.7, 14.6 Hz, 2H), 0.91 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.3, 142.3, 138.9, 136.8, 136.3, 136.1, 135.2, 133.6, 131.6, 129.0, 128.7, 128.6, 128.0, 127.9, 127.6, 127.6, 127.2, 126.8, 126.1, 124.6, 122.4, 121.2, 121.1, 57.3, 50.7, 40.6, 33.4, 21.2. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>30</sub>H<sub>23</sub>NNaOS: 468.1393; found: 468.1396.



#### 5-(Furan-2-ylmethyl)-6a-methyl-5,6,6a,7-tetrahydro-4H-dibenzo

[*de*,*g*]isoquinolin-4-one (3g), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 23 mg, 35%, white solid, m.p. 182-184 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.08 (d, *J* = 9.0 Hz, 1H), 7.90 (d, *J* = 9.2 Hz, 1H), 7.75 (d, *J* = 7.7 Hz, 1H), 7.49 – 7.13 (m, 5H), 6.39 – 6.28 (m, 2H), 4.82 (dd, *J* = 115.9, 15.2 Hz, 2H), 3.52 (dd, *J* = 137.3, 12.1 Hz, 2H), 2.77 (dd, *J* = 137.7, 14.8 Hz, 2H), 0.99 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.0, 150.6, 142.4, 141.0, 133.7, 132.5, 131.8, 129.0, 128.1, 127.9, 127.5, 127.4, 127.1, 123.8, 110.4, 110.4, 108.9, 57.6, 43.2, 39.8, 33.6, 21.8. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>22</sub>H<sub>19</sub>NNaO<sub>2</sub>: 352.1308; found:

352.1302.



**6a-Methyl-5-(thiophen-2-ylmethyl)-5,6,6a,7-tetrahydro-4H-dibenzo**[*de*,*g*]isoquin olin-4-one (3h), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acet ate = 10:1-3:1), 54 mg, 79%, white solid, m.p. 181-182 °C. <sup>1</sup>H NMR (400 MHz, CDC l<sub>3</sub>)  $\delta$  (ppm) 8.11 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.91 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.76 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 1H), 7.38 – 7.16 (m, 4H), 7.09 (dd, *J* = 3.4, 1.2 H z, 1H), 6.97 (dd, *J* = 5.1, 3.4 Hz, 1H), 4.99 (dd, *J* = 63.2, 14.8 Hz, 2H), 3.49 (dd, *J* = 1 22.4, 12.1 Hz, 2H), 2.76 (dd, *J* = 113.3, 14.8 Hz, 2H), 1.00 (s, 3H). <sup>13</sup>C NMR (101 MH z, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.1, 141.0, 139.3, 133.8, 132.6, 131.9, 129.1, 128.3, 128.1, 127.6, 127.6, 127.3, 127.3, 126.8, 125.8, 123.9, 57.6, 45.5, 39.9, 33.6, 22.2. HR-MS (ESI): c alcd for [M+Na]<sup>+</sup> C<sub>22</sub>H<sub>19</sub>NNaOS: 368.1080; found: 368.1076.



**5-Benzyl-6a-methyl-5,6,6a,7-tetrahydro-4H-dibenzo**[*de*,*g*]isoquinolin-4-one (4aa), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 58 mg, 87%, white solid, m.p. 182-183 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.13 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.92 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.76 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.48 – 7.27 (m, 7H), 7.26 – 7.16 (m, 2H), 4.84 (dd, *J* = 82.6, 14.5 Hz, 2H), 3.41 (dd, *J* = 148.6, 12.2 Hz, 2H), 2.72 (dd, *J* = 120.5, 14.8 Hz, 2H), 0.96 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.4, 141.0, 137.0, 133.8, 132.6, 131.9, 129.1, 128.8, 128.7, 1 28.3, 128.1, 127.7, 127.6, 127.5, 127.2, 123.9, 57.6, 50.9, 39.9, 33.5, 22.2. HR-MS (E

SI): calcd for [M+Na]<sup>+</sup> C<sub>24</sub>H<sub>21</sub>NNaO: 362.1515; found: 362.1515.



**6a-Methyl-5-(4-methylbenzyl)-5,6,6a,7-tetrahydro-4H-dibenzo**[*de*,*g*]isoquinolin-4 -one (4ab), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 52 mg, 74%, white solid, m.p. 185-186 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.12 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.90 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.75 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 1H), 7.36 – 7.31 (m, 1H), 7.28 – 7.22 (m, 3H), 7.16 (d d, *J* = 9.8, 7.4 Hz, 3H), 5.09 – 4.48 (dd, *J* = 77.2, 14.4 Hz, 2H), 3.38 (dd, *J* = 140.1, 1 2.2 Hz, 2H), 2.71 (dd, *J* = 118.1, 14.8 Hz, 2H), 2.33 (s, 3H), 0.95 (s, 3H). <sup>13</sup>C NMR (1 01 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.3, 141.0, 137.4, 133.9, 133.8, 132.6, 131.9, 129.4, 129. 1, 128.8, 128.2, 128.1, 127.8, 127.6, 127.5, 127.2, 123.9, 57.5, 50.6, 39.9, 33.5, 22.3, 21.2. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>25</sub>H<sub>23</sub>NNaO: 376.1672; found: 376.1675.



**6a-Methyl-5-(2-methylbenzyl)-5,6,6a,7-tetrahydro-4H-dibenzo**[*de,g*]isoquinolin-4 -one (4ac), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 55 mg, 79%, white solid, m.p. 181-183 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm)  $\delta$  8.19 – 7.72 (m, 3H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.37 – 7.26 (m, 2H), 7.26 – 7.15 (m, 5H), 4.89 (dd, *J* = 213.7, 14.7 Hz, 2H), 3.35 (dd, *J* = 135.2, 12.2 Hz, 2H), 2.70 (d d, *J* = 120.9, 14.8 Hz, 2H), 2.39 (s, 3H), 0.93 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.2, 141.0, 137.3, 134.5, 133.8, 132.6, 132.0, 130.8, 129.9, 129.2, 128.3, 128. 2, 127.9, 127.7, 127.7 127.6, 127.2, 126.1, 123.9, 56.9, 48.4, 39.9, 33.4, 22.1, 19.5. H R-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>25</sub>H<sub>23</sub>NNaO: 376.1672; found: 376.1673.



**5-(4-Methoxybenzyl)-6a-methyl-5,6,6a,7-tetrahydro-4H-dibenzo**[*de*,*g*]isoquinolin -4-one (4ad), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 53 mg, 73%, white solid, m.p. 181-182 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.23 – 7.57 (m, 3H), 7.49 – 7.26 (m, 4H), 7.26 – 7.16 (m, 2H), 6.88 (d, *J* = 8.7 Hz, 2H), 4.77 (dd, *J* = 110.7, 14.3 Hz, 2H), 3.79 (s, 3H), 3.39 (dd, *J* = 135.2, 12.2 Hz, 2H), 2.72 (dd, *J* = 117.0, 14.8 Hz, 2H), 0.94 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (p m) 164.3, 159.21, 141.0, 133.8, 132.6, 131.9, 130.1, 129.1, 129.9, 128.2, 128.1, 127. 8, 127.6, 127.5, 127.2, 123.9, 114.1, 57.3, 55.4, 50.2, 39.9, 33.5, 22.2. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>25</sub>H<sub>23</sub>NNaO<sub>2</sub>: 392.1621; found: 392,1615.



**5-(4-Fluorobenzyl)-6a-methyl-5,6,6a,7-tetrahydro-4H-dibenzo**[*de,g*]isoquinolin-4 -one (4ae), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 44 mg, 62%, white solid, m.p. 182-184 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.10 (dd, J = 7.7, 1.2 Hz, 1H), 7.91 (dd, J = 7.8, 1.3 Hz, 1H), 7.75 (dd, J = 7.7, 1.3 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.39 – 7.30 (m, 3H), 7.28 – 7.22 (m, 1H), 7.18 (d t, J = 7.4, 1.3 Hz, 1H), 7.06 – 6.97 (m, 2H), 4.79 (dd, J = 109.0, 14.5 Hz, 2H), 3.39 (d d, J = 155.6, 12.1 Hz, 2H), 2.72 (dd, J = 118.9, 14.8 Hz, 2H), 0.94 (s, 3H). <sup>13</sup>C NMR (1 01 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.4, 163.6, 161.2, 140.9, 133.7, 132.9, 132.8, 132.6, 132. 0, 130.5, 130.42, 129.1, 128.3, 128.1, 127.7, 127.6, 127.6, 127.3, 124.0, 115.7, 115.5, 57.6, 50.2, 39.9, 33.5, 22.3. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>24</sub>H<sub>20</sub>FNNaO: 380.142 1; found: 380.1424.



**5-(4-Chlorobenzyl)-6a-methyl-5,6,6a,7-tetrahydro-4H-dibenzo**[*de*,*g*]isoquinolin-4 -one (4af), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 56 mg, 76%, white solid, m.p. 176-177 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.17 – 7.70 (m, 3H), 7.45 (t, J = 7.8 Hz, 1H), 7.38 – 7.26 (m, 6H), 7.25 – 7.16 (m, 1H), 4.80 (dd, J = 96.8, 14.6 Hz, 2H), 3.40 (dd, J = 163.3, 12.2 Hz, 2H), 2.73 (dd, J = 119.3, 14.8 Hz, 2H), 0.96 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.4, 14 0.9, 135.7, 133.7, 132.5, 132.0, 130.1, 129.1, 128.9, 128.3, 128.1, 127.7, 127.6, 127.5, 127.3, 124.0, 57.8, 50.3, 39.9, 33.5, 22.3. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>24</sub>H<sub>20</sub>Cl NNaO<sub>2</sub>: 396.1126; found: 396.1124.



#### 5-(3,4-Dimethoxybenzyl)-6a-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]

**isoquinolin-4-one** (4ag), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 48 mg, 61%, white solid, m.p. 189-192 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.12 (d, J = 9.0 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.29 – 7.22 (m, 1H), 7.18 (d, J = 7.4 Hz, 1H), 6.98 – 6.74 (m, 3H), 4.77 (dd, J = 253.6, 14.3 Hz, 2H), 3.86 (d, J = 15.0 Hz, 6H), 3.39 (dd, J = 163.8, 12.1 Hz, 2H), 2.72 (dd, J = 149.7, 14.8 Hz, 2H), 0.94 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.2, 149.2, 148.6, 140.8,

133.6, 132.5, 131.8, 129.4, 129.0, 128.1, 127.9, 127.6, 127.5, 127.4, 127.0, 123.8, 121.1, 111.7, 110.8, 57.0, 55.9, 50.3, 39.7, 33.3, 22.2. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>26</sub>H<sub>25</sub>ClNNaO<sub>3</sub>: 422.1727; found: 422.1725.



**6a-Methyl-5-(1-phenylethyl)-5,6,6a,7-tetrahydro-4H-dibenzo**[*de,g*]isoquinolin-4-o ne (4ah), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 1 0:1-3:1), 62 mg, 88%, white solid, m.p. 184-186 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (p pm) 8.10 (d, J = 7.7 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.45 – 7.14 (m, 8H), 7.10 (d, J = 7.4 Hz, 1H), 6.31 (q, J = 7.1 Hz, 1H), 3.22 (d, dd, J = 214.8, 12.0 Hz, 2H), 2.65 (dd, J = 182.4, 14.8 Hz, 2H), 1.60 (d, J = 7.1 Hz, 3H), 0.58 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 163.8, 140.7, 139.9, 133.8, 132.5, 131.7, 128.9, 128.3, 128.1, 128.1, 128.0, 127.6, 127.4, 127.4, 127.0, 123.8, 51.4, 50.2, 39.8, 32.9, 2 1.6, 14.8. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>25</sub>H<sub>23</sub>NNaO: 376.1672; found: 376.1676.



**6a-Methyl-5-phenyl-5,6,6a,7-tetrahydro-4H-dibenzo**[*de,g*]isoquinolin-4-one (4ai), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 41 mg, 64%, white solid, m.p. 174-176 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.09 (d, *J* = 7.7 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.76 (d, *J* = 7.7 Hz, 1H), 7.47 – 7.18 (m, 8H), 3.90 (dd, *J* = 249.3, 12.0 Hz, 2H), 2.80 (dd, *J* = 155.6, 14.7 Hz, 2H), 1.23 (s, 3H).<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 163.9, 143.2, 141.1, 133.6, 132.5, 131.9, 129.1, 128.3, 128.2, 127.9, 127.6, 127.5, 127.4, 126.4, 125.4, 123.9, 61.4, 39.6, 34.1, 22.0. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>23</sub>H<sub>19</sub>NNaO: 348.1359; found: 348.1353.



**6a-Methyl-5-(p-tolyl)-5,6,6a,7-tetrahydro-4H-dibenzo**[*de,g*]isoquinolin-4-one (4a j), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3: 1), 38 mg, 56%, white solid, m.p. 178-180 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8. 15 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.97 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.82 (dd, *J* = 7.7, 1.3 Hz, 1 H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 7.4 Hz, 1H), 7.33 (d, *J* = 8.5 Hz, 6H), 3.94 (dd, *J* = 206.2, 12.0 Hz, 2H), 2.86 (dd, *J* = 125.0, 14.8 Hz, 2H), 2.41 (s, 3H), 1.29 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.0, 141.2, 140.8, 136.4, 133.7, 132.7, 132.0, 129.8, 129.19, 128.3, 128.2, 127.7, 127.6, 127.4, 125.4, 124.0, 61.6, 39.8, 34.2, 22.1, 2 1.2. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>24</sub>H<sub>21</sub>NNaO: 362.1515; found: 362.1515.



**5-(4-Fluorophenyl)-6a-methyl-5,6,6a,7-tetrahydro-4H-dibenzo**[*de,g*]isoquinolin-4 -one (4ak), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 35 mg, 51%, white solid, m.p. 172-173 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.11 (dd, J = 7.7, 1.2 Hz, 1H), 7.97 (dd, J = 7.9, 1.2 Hz, 1H), 7.80 (d, J = 7.6 H z, 1H), 7.51 – 7.26 (m, 6H), 7.13 (t, J = 8.6 Hz, 2H), 3.91 (dd, J = 214.1, 12.0 Hz, 2H), 2.85 (dd, J = 124.1, 14.8 Hz, 2H), 1.27 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.1, 159.6, 141.1, 139.2, 133.5, 132.5, 131.9, 129.1, 128.3, 128.2, 127.7, 127.6, 12 7.5, 127.2, 127.2, 123.9, 116.1, 115.8, 61.6, 39.6, 34.2, 22.1. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>23</sub>H<sub>18</sub>FNNaO: 366.1265; found: 366.1259.



**6a-Methyl-5-(naphthalen-2-yl)-5,6,6a,7-tetrahydro-4***H***-dibenzo[***de,g***]isoquinolin-<b>4-one (4al)**, (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 40 mg, 53%, white solid, m.p. 200-202 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.17 (dd, J = 7.8, 1.2 Hz, 1H), 7.98 (dd, J = 7.9, 1.2 Hz, 1H), 7.95 – 7.79 (m, 5 H), 7.62 (dd, J = 8.7, 2.2 Hz, 1H), 7.54 – 7.27 (m, 6H), 4.05 (dd, J = 195.5, 12.0 Hz, 2 H), 2.88 (dd, J = 127.9, 14.7 Hz, 2H), 1.32 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (pp m) 164.2, 141.3, 141.1, 133.8, 133.7, 132.7, 132.1, 131.9, 129.2, 128.9, 128.4, 128.4, 128.1, 127.9, 127.8, 127.7, 127.6, 126.5, 126.1, 124.5, 124.0, 122.9, 61.7, 39.8, 34.4, 2 2.2. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>27</sub>H<sub>21</sub>NNaO: 398.1515; found: 398.1516.



Ethyl 5-benzyl-4-oxo-5,6-dihydro-4H-dibenzo[*de*,*g*]isoquinoline-6a-7*H*--carboxyl ate (4am), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 57 mg, 72%, white solid, m.p. 185-186 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.1 (dd, J = 7.8, 1.2 Hz, 1H), 7.9 (dd, J = 7.9, 1.2 Hz, 1H), 7.7 (d, J = 7.8 Hz, 1H), 7.5 (t, J = 7.8 Hz, 1H), 7.4 – 7.0 (m, 3H), 4.8 (d, J = 14.6 Hz, 5H), 4.6 (d, J = 14.6 Hz, 1H), 3.9 (d, J = 12.4 Hz, 1H), 3.7 – 3.5 (m, 3H), 3.1 (d, J = 14.9 Hz, 1H), 2.8 (d, J = 14.8 H z, 1H), 0.6 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.5, 164.4, 136.8, 13 5.1, 133.4, 133.2, 132.0, 128.6, 128.6, 128.5, 128.4, 128.1, 127.9, 127.8, 127.6, 127.1, 124.0, 61.4, 54.3, 50.6, 45.3, 36.8, 13.5, 1.0. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>2</sub>H<sub>23</sub> NNaO<sub>3</sub>: 420.1570; found: 420.1567.



5-Benzyl-6a-((((R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chrom an-6-yl)oxymethyl)-5,6,6a,7-tetrahydro-4*H*-dibenzo[*de*,*g*]isoquinolin-4-one (4an), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 8 2 mg, 54%, colourless oil). <sup>1</sup>H NMR (400 MHz, Chloroform-d)  $\delta$  8.1 (d, J = 8.9 Hz, 1 H), 7.9 (d, J = 9.2 Hz, 1H), 7.7 (d, J = 8.0 Hz, 1H), 7.5 – 7.2 (m, 9H), 5.9 (d, J = 14.4 Hz, 1H), 4.1 (d, J = 12.5 Hz, 2H), 4.0 (d, J = 14.4 Hz, 1H), 3.7 (d, J = 9.5 Hz, 2H), 3.5 – 3.4 (m, 1H), 3.3 (d, J = 9.5 Hz, 1H), 2.8 (d, J = 15.3 Hz, 2H), 2.5 (t, J = 6.9 Hz, 6H), 2.0 (d, J = 17.5 Hz, 3H), 1.3 – 1.1 (m, 23H), 0.9 – 0.7 (m, 15H). <sup>13</sup>C NMR (101 MHz, Chloroform-d)  $\delta$  164.3, 147.9, 146.9, 136.9, 133.4, 132.9, 132.6, 129.9, 128.7, 128.6, 128.5, 128.3, 128.2, 128.2, 127.6, 127.5, 127.1, 125.5, 123.7, 123.0, 74.7, 69.4, 52.4, 5 1.7, 39.4, 37.8, 37.4, 37.3, 34.4, 32.8, 32.7, 31.3, 28.0, 24.8, 24.4, 22.7, 22.6, 21.0, 20. 6, 19.7, 12.7, 11.8, 11.7. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>53</sub>H<sub>69</sub>NNaO<sub>3</sub>: 790.5170; f ound: 790.5177.



**5-Benzyl-6a-((((1R,2R,5R)-2-isopropyl-5-methylcyclohexyl)oxy)methyl)-5,6,6a,7tetrahydro-4***H***-dibenzo[de,g]isoquinolin-4-one (4ao), (silica gel: 200–300 mesh, sol vent system: petroleum ether/ethyl acetate = 10:1-3:1), 82 mg, 53%, white solid, m.p. 179-180 °C). <sup>1</sup>H NMR (400 MHz, Chloroform-d) δ 8.2 – 8.1 (m, 2H), 8.0 – 7.9 (m, 2 H), 7.8 – 7.7 (m, 2H), 7.6 – 7.3 (m, 15H), 7.3 – 7.0 (m, 3H), 5.6 (d, J = 14.5 Hz, 1H), 5.1 (d, J = 14.5 Hz, 1H), 4.5 (d, J = 14.5 Hz, 1H), 4.1 (d, J = 14.5 Hz, 1H), 3.9 – 3.7**  (m, 2H), 3.6 - 3.4 (m, 1H), 3.4 - 3.2 (m, 3H), 3.2 - 3.0 (m, 3H), 2.9 - 2.5 (m, 5H), 2.2 - 2.1 (m, 5H), 1.8 - 1.5 (m, 6H), 1.0 - 0.7 (m, 19H), 0.7 - 0.4 (m, 5H). <sup>13</sup>C NMR (10 1 MHz, Chloroform-d)  $\delta$  164.2, 137.4, 137.3, 137.0, 133.6, 132.9, 132.9, 132.5, 129.4, 128.8, 128.7, 128.6, 128.3, 128.2, 128.1, 127.9, 127.5, 127.5, 127.3, 127.3, 127.0, 12 6.9, 123.6, 78.7, 78.4, 64.9, 64.7, 52.3, 52.1, 51.2, 51.2, 48.3, 48.2, 40.1, 39.8, 37.8, 3 7.7, 34.5, 33.9, 33.9, 31.3, 31.3, 25.8, 25.5, 23.3, 23.1, 22.3, 22.2, 21.1, 21.0, 16.4, 16. 2. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>34</sub>H<sub>39</sub>NNaO<sub>2</sub>: 516.2873; found: 516.2880.



**5-Benzyl-6a-((((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1, 3]dioxol-4-yl)methoxy)methyl)-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]isoquinolin-4-one (4ap),** (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1),67 mg, 62%, white solid, m.p. 186-188 °C). <sup>1</sup>H NMR (500 MHz, Chlorofo rm-d) δ 7.9 (d, J = 8.5 Hz, 2H), 7.7 – 7.6 (m, 4H), 7.6 – 7.5 (m, 2H), 7.4 – 7.2 (m, 12 H), 5.0 (dd, J = 55.3, 14.5 Hz, 2H), 4.8 – 4.5 (m, 41H), 4.4 – 4.2 (m, 4H), 4.1 (d, J = 1 2.0 Hz, 1H), 4.0 – 3.6 (m, 11H), 3.6 – 3.2 (m, 6H), 3.1 – 2.9 (m, 2H), 1.6 – 1.4 (m, 9 H), 1.4 (dd, J = 34.0, 5.7 Hz, 12H), 1.3 (s, 3H).<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 164.1, 164.0, 137.4, 137.3, 136.7, 136.7, 133.5, 133.4, 132.9, 132.8, 132.5, 132.4, 129. 2, 129.0, 128.7, 128.7, 128.6, 128.6, 128.3, 128.3, 127.9, 127.9, 127.6, 127.6, 127.5, 1 27.4, 127.1, 127.0, 123.7, 123.6, 112.2, 109.1, 109.0, 85.1, 84.9, 84.6, 82.2, 81.9, 71.5, 71.1, 67.9, 54.7, 54.4, 51.5, 51.4, 50.6, 50.5, 37.5, 37.4, 33.7, 33.7, 26.5, 26.4, 25.1, 2 5.0. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>33</sub>H<sub>35</sub>NNaO<sub>6</sub>: 564.2357; found: 564.2349.



**5-Benzyl-6a,9-dimethyl-5,6,6a,7-tetrahydro-4***H***-dibenzo[***de***,***g***]isoquinolin-4-one (4 <b>ba**), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3: 1), 54 mg, 77%, white solid, m.p. 182-183 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8. 37 (dd, *J* = 7.7, 1.2 Hz, 1H), 8.15 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.91 (d, *J* = 7.9 Hz, 1H), 7. 74 – 7.50 (m, 7H), 7.40 (d, *J* = 8.0 Hz, 1H), 5.11 (dd, *J* = 69.6, 14.4 Hz, 2H), 3.67 (dd, *J* = 147.5, 12.2 Hz, 2H), 2.94 (dd, *J* = 128.3, 14.8 Hz, 2H), 2.62 (s, 3H), 1.23 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.3, 140.5, 138.0, 136.9, 133.5, 131.9, 129.7, 129.7, 128.6, 128.6, 128.1, 127.5, 127.5, 127.4, 127.1, 126.7, 123.7, 57.5, 50.7, 39.7, 3 3.4, 22.1, 21.1. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>25</sub>H<sub>23</sub>NNaO<sub>2</sub>: 392.1621; found: 39 2,1612.



**5-Benzyl-9-methoxy-6a-methyl-5,6,6a,7-tetrahydro-4***H***-dibenzo**[*de*,*g*]isoquinolin-**4-one (4bb)**, (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 44 mg, 60%, white solid, m.p. 193-194 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) 8.07 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.89 – 7.61 (m, 2H), 7.49 – 7.27 (m, 6H), 6.93 – 6.68 (m, 2H), 4.84 (dd, *J* = 83.8, 14.5 Hz, 2H), 3.83 (s, 3H), 3.39 (dd, *J* = 151.4, 12.2 Hz, 2H), 2.68 (dd, *J* = 136.5, 14.8 Hz, 2H), 0.96 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.5, 159.7, 140.1, 137.0, 135.5, 131.9, 128.8, 128.7, 127.7, 127.6, 127.6, 127.2, 126.5, 125.5, 125.3, 114.7, 112.7, 57.6, 55.4, 50.9, 40.2, 33.5, 22.2. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>25</sub>H<sub>23</sub>NNaO: 376.1672; found: 376.1670.



**5-Benzyl-9-ethyl-6a-methyl-5,6,6a,7-tetrahydro-4H-dibenzo**[*de,g*]isoquinolin-4-o ne (4bc), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 1 0:1-3:1), 57 mg, 78%, white solid, m.p. 183-184 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (p pm) 8.36 (dd, J = 7.8, 1.2 Hz, 1H), 8.13 (dd, J = 7.8, 1.3 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.72 – 7.48 (m, 7H), 7.41 (dd, J = 7.7, 1.8 Hz, 1H), 5.25 – 4.94 (m, 2H), 3.65 (dd, J = 146.4, 12.2 Hz, 2H), 3.09 (d, J = 14.8 Hz, 1H), 2.90 (q, J = 7.6 Hz, 2H), 2.78 (d, J= 14.8 Hz, 1H), 1.51 (t, J = 7.6 Hz, 3H), 1.21 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) 164.4, 144.6, 140.8, 137.1, 133.7, 132.1, 130.1, 128.8, 128.7, 128.7, 127.7, 127. 7, 127.7, 127.6, 127.0, 127.0, 123.9, 57.7, 50.9, 40.0, 33.5, 28.7, 22.3, 15.5. HR-MS (E SI): calcd for [M+Na]<sup>+</sup> C<sub>26</sub>H<sub>25</sub>NNaO: 390.1828; found: 390.1832.



**5-Benzyl-9-chloro-6a-methyl-5,6,6a,7-tetrahydro-4H-dibenzo**[*de,g*]isoquinolin-4one (4bd), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 34 mg, 46%, white solid, m.p. 186-187 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.14 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.86 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.68 (d, *J* = 8.4 H z, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.40 – 7.27 (m, 6H), 7.18 (dd, *J* = 2.2, 1.2 Hz, 1H), 4. 83 (dd, J = 78.9, 14.5 Hz, 2H), 3.40 (dd, J = 144.2, 12.2 Hz, 2H), 2.69 (dd, J = 123.1, 14.9 Hz, 2H), 0.95 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.2, 140.7, 136.9, 135.6, 133.8, 131.2, 131.0, 129.0, 128.8, 128.4, 127.8, 127.7, 127.1, 125.3, 57.4, 50.9, 39.7, 33.5, 22.2. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>24</sub>H<sub>20</sub>ClNNaO: 396.1126; found: 396.1120.



**5-Benzyl-6a-methyl-9-nitro-5,6,6a,7-tetrahydro-4H-benzo**[*de*]**anthracen-4-one** (4 **be**), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3: 1), 54 mg, 71%, white solid, m.p. 193-194 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8. 29 – 7.82 (m, 5H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.43 – 7.27 (m, 5H), 4.85 (dd, *J* = 87.1, 14. 4 Hz, 2H), 3.45 (dd, *J* = 140.7, 12.2 Hz, 2H), 3.08 – 2.60 (dd, *J* = 85.4, 15.1 Hz, 2H), 0.97 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 163.8, 147.3, 141.7, 139.0, 136.7, 135.2, 130.1, 129.9, 128.8, 128.2, 128.1, 127.9, 124.7, 124.1, 122.9, 57.2, 50.9, 39.7, 3 3.5, 22.4. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>24</sub>H<sub>20</sub>N<sub>2</sub>NaO<sub>3</sub>: 407.1366; found: 407.136 3.



**5-Benzyl-6a-methyl-9-phenyl-5,6,6a,7-tetrahydro-4H-dibenzo**[*de,g*]isoquinolin-4one (4bf), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 62 mg, 75%, white solid, m.p. 192-193 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (p pm) 8.15 (dd, J = 7.7, 1.2 Hz, 1H), 7.95 (dd, J = 7.8, 1.2 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.65 – 7.56 (m, 3H), 7.50 – 7.27 (m, 10H), 5.05 – 4.65 (dd, J = 72.4, 14.4 Hz, 2 H), 3.44 (dd, J = 149.4, 12.2 Hz, 2H), 2.79 (dd, J = 114.6, 14.8 Hz, 2H), 1.01 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.3, 141.0, 141.0, 140.5, 137.0, 134.2, 131.7, 131.6, 128.9, 128.8, 128.1, 127.8, 127.7, 127.7, 127.6, 127.2, 127.0, 126.2, 124. 4, 57.6, 50.9, 40.1, 33.6, 22.4. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>30</sub>H<sub>25</sub>NNaO: 438.18 28; found: 438.1821.



**5-Benzyl-6a-methyl-9-phenoxy-5,6,6a,7-tetrahydro-4H-dibenzo**[*de,g*]isoquinolin-**4-one (4bg)**, (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 47 mg, 55%, white solid, m.p. 180-181 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) 8.10 (dd, J = 7.7, 1.2 Hz, 1H), 7.85 (dd, J = 7.8, 1.3 Hz, 1H), 7.71 (d, J = 8.5 H z, 1H), 7.47 – 7.26 (m, 8H), 7.19 – 6.80 (m, 5H), 4.84 (dd, J = 91.4, 14.4 Hz, 2H), 3.3 9 (dd, J = 151.5, 12.2 Hz, 2H), 2.67 (dd, J = 138.0, 14.9 Hz, 2H), 0.97 (s, 3H). <sup>13</sup>C NM R (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.2, 157.4, 156.7, 140.3, 136.8, 135.6, 131.4, 129.8, 1 28.7, 128.6, 127.6, 127.6, 127.5, 126.7, 125.3, 123.6, 119.2, 118.8, 117.3, 57.4, 50.7, 3 9.9, 33.4, 22.1. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>30</sub>H<sub>25</sub>N<sub>2</sub>NaO<sub>2</sub>: 454.1777; found: 45 4.1783.



**5-Benzyl-6a-methyl-4-oxo-5,6,6a,7-tetrahydro-4***H***-dibenzo**[*de*,*g*]isoquinoline-9-ca **rbonitrile (4bh)**, (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl ace tate = 10:1-3:1), 62 mg, 86%, white solid, m.p. 187-188 °C. <sup>1</sup>H NMR (500 MHz, CDC 1<sub>3</sub>)  $\delta$  (ppm) 8.21 (d, *J* = 7.8 Hz, 1H), 7.92 (d, *J* = 9.1 Hz, 1H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.40 – 7.22 (m, 5H), 5.07 – 4.63 (dd, *J* = 115.7, 14.5 Hz, 2H), 3.42 (dd, *J* = 173.3, 12.3 Hz, 2H), 2.75 (dd, *J* = 122.3, 15.0 Hz, 2H), 0.94 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 163.7, 141.4, 137.0, 136.5, 1 34.7, 132.3, 131.3, 129.9, 129.7, 128.7, 127.9, 127.9, 127.7, 127.7, 124.4, 118.7, 111.3, 57.1, 50.7, 39.2, 33.3, 22.2. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>25</sub>H<sub>20</sub>N<sub>2</sub>NaO: 387.146 8; found: 387.1469.



**5-Benzyl-2,6a-dimethyl-5,6,6a,7-tetrahydro-4H-dibenzo**[*de,g*]isoquinolin-4-one (4 bi), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3: 1), 43 mg, 62%, white solid, m.p. 190-191 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8. 02 – 7.66 (m, 3H), 7.41 – 7.26 (m, 6H), 7.25 – 7.14 (m, 2H), 5.03 – 4.65 (dd, *J* = 62.8, 14.4 Hz, 2H), 3.39 (dd, *J* = 142.6, 12.2 Hz, 2H), 2.70 (dd, *J* = 114.4, 14.8 Hz, 2H), 2. 46 (s, 3H), 0.94 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.6, 138.2, 137.3, 13 7.0, 133.9, 132.7, 131.9, 129.1, 128.8, 128.70, 128.6, 128.1, 127.9, 127.7, 127.5, 127. 5, 123.8, 57.8, 50.9, 40.1, 33.2, 22.3, 21.5. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>25</sub>H<sub>23</sub>N NaO: 376.1672; found: 376.1664.



**5-Benzyl-3,6a-dimethyl-5,6,6a,7-tetrahydro-4***H***-dibenzo[***de***,***g***]isoquinolin-4-one (4 bj), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3: 1), 52 mg, 75%, white solid, m.p. 180-181 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta (ppm) 7. 74 (d,** *J* **= 8.0 Hz, 1H), 7.69 (dd,** *J* **= 7.7, 1.3 Hz, 1H), 7.42 – 7.27 (m, 6H), 7.26 – 7.13 (m, 3H), 5.00 – 4.66 (dd,** *J* **= 46.0, 14.8 Hz, 2H), 3.38 (dd,** *J* **= 167.6, 12.3 Hz, 2H), 2. 88 – 2.45 (m, 5H), 0.90 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta (ppm) 164.9, 142.4, 1 40.7, 137.2, 133.4, 133.1, 131.5, 129.9, 128.8, 128.7, 128.7, 127.8, 127.6, 127.5, 126. 6, 126.4, 123.7, 57.2, 50.7, 39.9, 34.5, 22.8, 21.5. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C <sup>25</sup>H<sub>23</sub>NNaO: 376.1672; found: 376.1680.** 



**5-Benzyl-2-chloro-6a-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]isoquinolin-4one (4bk),** (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 34 mg, 46%, white solid, m.p. 183-184 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) 8.08 (d, *J* = 2.2 Hz, 1H), 7.84 (d, *J* = 2.2 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.39 – 7.23 (m, 7H), 7.18 (d, *J* = 7.4 Hz, 1H), 4.82 (dd, *J* = 107.0, 14.5 Hz, 2H), 3.38 (dd, *J* = 166.3, 12.3 Hz, 2H), 2.69 (dd, *J* = 127.5, 14.9 Hz, 2H), 0.91 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 163.0, 139.1, 136.5, 133.9, 133.8, 133.7, 131.3, 129.2, 129.1, 128.8, 128.6, 127.7, 127.6, 127.5, 126.9, 123.9, 57.2, 50.8, 39.5, 33.1. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>24</sub>H<sub>20</sub>CINNaO: 396.1126; found: 396.1134.



**5-Benzyl-6a,8,10-trimethyl-5,6,6a,7-tetrahydro-4***H***-dibenzo**[*de*,*g*]isoquinolin-4-on e (4bl), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10: 1-3:1), 49 mg, 67%, white solid, m.p. 187-189 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (pp m) 8.10 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.90 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.48 – 7.26 (m, 7H), 6.98 (d, *J* = 1.7 Hz, 1H), 4.84 (dd, *J* = 89.9, 14.5 Hz, 2H), 3.42 (dd, *J* = 149.2, 12.2 H z, 2H), 2.63 (dd, *J* = 92.3, 15.1 Hz, 2H), 2.37 (s, 3H), 2.26 (s, 3H), 0.94 (s, 3H). <sup>13</sup>C N MR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.5, 140.8, 137.0, 136.1, 136.0, 132.4, 131.0, 129.3, 128.8, 128.7, 127.7, 127.7, 127.5, 127.5, 122.6, 57.7, 50.9, 35.4, 33.3, 22.5, 21.33, 19. 8. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>26</sub>H<sub>25</sub>NNaO: 390.1820; found: 390.1828.



**2-Benzyl-3a-methyl-2,3,3a,4-tetrahydro-1H-indeno[2,1,7-***def***]isoquinolin-1-one** (**4bm**), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3:1), 48 mg, 78%, white solid, m.p. 191-192 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.94 (d, *J* = 8.5 Hz, 1H), 7.71 – 7.63 (m, 2H), 7.58 – 7.51 (m, 1H), 7.39 – 7.23 (m, 6H), 4.84 (dd, *J* = 141.7, 14.6 Hz, 2H), 3.62 (dd, *J* = 84.1, 11.9 Hz, 2H), 3.33 – 3.06 (dd, *J* = 85.0, 15.0 Hz, 2H), 1.25 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.1, 153.3, 144.3, 137.5, 134.7, 132.8, 130.5, 128.5, 128.5, 127.4, 124.3, 123.9, 122.9, 121.2, 120.2, 58.4, 51.0, 44.7, 40.5, 25.5. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>22</sub>H<sub>219</sub>NNaO: 336.1359; found: 336.1358.



**2-Benzyl-3a,8-dimethyl-2,3,3a,4-tetrahydro-1H-indeno[2,1,7-def]isoquinolin-1-on e (4bn)**, (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10: 1-3:1), 49 mg, 75%, white solid, m.p. 194-195 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (pp m) 7.80 – 7.71 (m, 2H), 7.58 (dd, J = 8.3, 6.9 Hz, 1H), 7.40 – 7.26 (m, 6H), 4.85 (dd, J = 87.7, 14.6 Hz, 2H), 3.62 (dd, J = 62.3, 11.9 Hz, 2H), 3.2 (dd, J = 70.4, 16.0 Hz, 2 H), 2.68 (d, J = 1.0 Hz, 3H), 1.26 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.3, 151.3, 144.5, 137.6, 134.8, 132.5, 132.3, 130.2, 128.5, 128.5, 127.4, 123.6, 121.1, 12 0.5, 120.0, 58.6, 51.0, 45.0, 39.9, 25.6, 18.0. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>23</sub>H<sub>21</sub> NNaO: 350.1515; found: 350.1507.



**2-Benzyl-8-methoxy-3a-methyl-2,3,3a,4-tetrahydro-1H-indeno[2,1,7-def]isoquino lin-1-one (4bo)**, (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acet ate = 10:1-3:1), 56 mg, 82%, white solid, m.p. 190-191 °C. <sup>1</sup>H NMR (400 MHz, CDCl <sup>3</sup>)  $\delta$  (ppm) 7.86 (d, *J* = 8.2 Hz, 1H), 7.52 (dd, *J* = 8.2, 6.9 Hz, 1H), 7.40 – 7.26 (m, 6H), 7.25 (d, *J* = 2.0 Hz, 1H), 4.83 (dd, *J* = 96.8, 14.6 Hz, 2H), 4.03 (s, 3H), 3.60 (dd, *J* = 6 8.4, 11.9 Hz, 2H), 3.17 (dd, *J* = 65.6, 16.0 Hz, 2H), 1.24 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 164.4, 154.9, 145.5, 143.6, 137.6, 135.9, 129.7, 128.5, 128.5, 127.4, 125.5, 121.9, 120.1, 119.0, 101.4, 58.9, 56.0, 51.1, 45.2, 39.6, 25.6. HR-MS (ESI): cal cd for [M+Na]<sup>+</sup> C<sub>23</sub>H<sub>21</sub>NNaO<sub>2</sub>: 366.1464; found: 366.1463.



4bp

**2-benzyl-3a-phenyl-2,3,3a,4-tetrahydro-1***H***-indeno[2,1,7-***def*]**isoquinolin-1-one** (4 **bp**), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 10:1-3: 1), 46 mg, 62%, white solid, m.p. 60-62 °C. <sup>1</sup>H NMR (400 MHz, Chloroform-d)  $\delta$  8.1 (d, J = 8.5 Hz, 1H), 7.8 (d, J = 8.5 Hz, 1H), 7.7 (d, J = 8.2 Hz, 1H), 7.6 (dd, J = 8.2, 6.

9 Hz, 1H), 7.3 – 7.2 (m, 1H), 7.2 – 7.1 (m, 6H), 7.0 – 6.9 (m, 2H), 6.9 – 6.8 (m, 2H), 4. 8 (d, J = 14.9 Hz, 1H), 4.4 (d, J = 14.9 Hz, 1H), 4.0 (q, J = 12.1 Hz, 2H), 3.7 (d, J = 16. 3 Hz, 1H), 3.5 (dt, J = 16.3, 1.4 Hz, 1H). <sup>13</sup>C NMR (101 MHz, Chloroform-d)  $\delta$  164.5, 149.6, 144.8, 143.9, 137.0, 136.0, 132.8, 130.7, 128.4, 127.8, 126.9, 126.7, 126.6, 12 4.7, 124.3, 122.9, 122.4, 121.2, 59.3, 50.6, 48.8, 47.1. HR-MS (ESI): calcd for [M+Na] <sup>+</sup> C<sub>27</sub>H<sub>21</sub>NNaO: 398.1515; found: 398.1517.



**2-Benzyl-3a-(((3,7-dimethylocta-2,6-dien-1-yl)oxy)methyl)-2,3,3a,4-tetrahydro-1 H-indeno[2,1,7-def]isoquinolin-1-one, (4bq)**, (silica gel: 200–300 mesh, solvent syst em: petroleum ether/ethyl acetate = 10:1-3:1), 72 mg, 78%, colourless oil). <sup>1</sup>H NMR (4 00 MHz, Chloroform-d)  $\delta$  7.9 (d, J = 8.5 Hz, 2H), 7.7 (dd, J = 18.7, 8.3 Hz,4H), 7.6 (d d, J = 8.2, 6.8 Hz, 2H), 7.5 – 7.4 (m, 4H), 7.4 – 7.2 (m, 9H), 5.2 – 4.9 (m, 6H), 4.6 (d, J = 14.4 Hz, 2H), 4.1 (d, J = 12.0 Hz, 2H), 3.8 – 3.6 (m, 8H), 3.5 (dd, J = 9.0, 1.6 Hz, 2H), 3.1 – 2.9 (m, 4H), 2.1 – 1.9 (m, 8H), 1.7 – 1.4 (m, 18H). <sup>13</sup>C NMR (101 MHz, Ch loroform-d)  $\delta$  164.1, 148.9, 144.8, 140.0, 137.9, 135.9, 132.8, 131.6, 130.6, 128.7, 12 8.5, 128.2, 127.4, 124.4, 124.2, 123.9, 122.8, 121.3, 120.6, 71.8, 67.6, 53.7, 51.0, 45.4, 40.7, 39.5, 26.3, 25.6, 17.6, 16.4. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>32</sub>H<sub>35</sub>NNaO<sub>2</sub>: 48 8.2560; found: 488.2558.



**2-Benzyl-3a-((((3aS,4aR,7aS)-2,2,6,6-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)** [**4,5-b:4',5'-e]pyran-3a-yl)methoxy)methyl)-2,3,3a,4-tetrahydro-1H-indeno[2,1,7-def]isoquinolin-1-one, (4br).** (silica gel: 200–300 mesh, solvent system: petroleum et her/ethyl acetate = 10:1-5:1), 68 mg, 60%, colourless oil). <sup>1</sup>H NMR (500 MHz, Chloro form-*d*)  $\delta$  7.9 (d, *J* = 8.5 Hz, 2H), 7.7 – 7.6 (m, 4H), 7.6 – 7.5 (m, 2H), 7.4 – 7.2 (m, 1 2H), 5.0 (dd, *J* = 55.3, 14.5 Hz, 2H), 4.8 – 4.5 (m, 4H), 4.3 – 4.2 (m, 4H), 4.1 (d, *J* = 1 2.0 Hz, 1H), 4.0 – 3.6 (m, 11H), 3.5 – 3.2 (m, 3H), 3.0 (dd, *J* = 16.6, 12.3 Hz, 2H), 1.6 – 1.4 (m, 9H), 1.4 (dd, *J* = 34.0, 5.7 Hz, 12H), 1.3 (s, 3H). <sup>13</sup>C NMR (126 MHz, Chlor roform-d)  $\delta$  164.1, 164.1, 148.5, 148.5, 144.6, 144.5, 137.6, 137.6, 135.9, 132.8, 130. 7, 130.6, 128.7, 128.4, 128.3, 127.5, 124.6, 124.3, 124.2, 122.9, 122.8, 121.4, 121.4, 1 21.3, 109.0, 108.9, 108.5, 108.4, 102.3, 73.8, 73.8, 73.1, 73.0, 71.0, 70.9, 70.1, 70.1, 6 9.9, 61.0, 61.0, 54.1, 54.1, 51.3, 51.0, 45.7, 45.6, 40.7, 40.6, 26.6, 26.5, 26.0, 25.9, 25. 5, 25.3, 24.1, 24.0. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>34</sub>H<sub>37</sub>NNaO<sub>7</sub>: 594.2462; found: 594.2446.



Ethyl (E)-3-([1,1'-biphenyl]-2-yl)acrylate (5a), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 20:1-10:1), 14 mg ,29%, colorless oil. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.80 – 7.62 (m, 2H), 7.49 – 7.35 (m, 6H), 7.35 – 7.25 (m, 2H), 6.40 (d, *J* = 15.9 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 1.28 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 166.9, 143.7, 142.9, 139.9, 132.6, 130.5, 129.8, 128.3,

127.6, 127.5, 126.8, 119.2, 60.4, 14.2. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>17</sub>H<sub>16</sub>NNaO<sub>2</sub>: 275.1043; found: 275.1048.



**2-Benzyl-4-methylene-5-phenyl-3,4-dihydroisoquinolin-1(2H)-one (6a),** (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 20:1-10:1), 40 mg, 6 3%, white solid, m.p. 116-118 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.21 (d, *J* = 7. 4 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.34 – 7.17 (m, 10H), 4.99 (s, 1H), 4.79 (s, 2H), 4.50 (s, 1H), 3.97 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 163.5, 141.1, 139.3, 136.7, 134.7, 134.5, 134.3, 129.7, 129.6, 129.1, 128.6, 128.4, 128.1, 128.0, 127.9, 127.5, 12 7.2, 120.1, 53.5, 50.3. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>23</sub>H<sub>19</sub>NNaO: 348.1359; foun d: 348.1367.



**2-Benzyl-5-phenyl-4-(prop-1-en-2-yl)-3,4-dihydroisoquinolin-1**(*2H*)-one (6b), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 20:1-10:1), 28 mg, 39%, colorless oil. <sup>1</sup>H NMR (400 MHz, Chloroform-d)  $\delta$  8.2 (dd, J = 7.3, 1.8 Hz, 1H), 7.5 – 7.2 (m, 12H), 4.9 (d, J = 14.6 Hz, 1H), 4.9 (s, 1H), 4.4 (d, J = 14.6 Hz, 1H), 4.2 (s, 1H), 3.6 (dd, J = 12.8, 4.4 Hz, 1H), 3.3 (dd, J = 12.8, 1.7 Hz, 1H), 3.2 (d, J = 4.2 Hz, 1H), 1.3 (s, 3H). <sup>13</sup>C NMR (101 MHz, Chloroform-d)  $\delta$  164.5, 144.5, 140.3, 140.1, 137.2, 136.8, 133.4, 130.3, 128.9, 128.6, 128.4, 128.1, 128.0, 127.5, 127.4, 127.3, 127.1, 116.1, 50.3, 47.6, 41.9, 21.2. HR-MS (ESI): calcd for [M+H]<sup>+</sup> C<sub>25</sub>H<sub>24</sub>NO: 354.1852; found: 354.1842.



00

**5-Benzyl-10-phenyl-3,4a,5,10b-tetrahydrophenanthridin-6**(*4H*)-one (6c), (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 20:1-10:1), 49 mg, 68%, white solid, m.p. 182-183 °C. <sup>1</sup>H NMR (400 MHz, Chloroform-d)  $\delta$  8.2 (dd, J = 7.6, 1.6 Hz, 1H), 7.5 – 7.3 (m, 10H), 7.3 – 7.2 (m, 3H), 5.9 – 5.5 (m, 3H), 4.1 (d, J = 16.2 Hz, 2H), 3.1 – 3.0 (m, 1H), 2.5 – 2.4 (m, 1H), 2.2 – 2.1 (m, 2H). <sup>13</sup>C NMR (101 MHz, Chloroform-d)  $\delta$  166.3, 141.4, 140.1, 139.7, 138.4, 133.2, 129.2, 128.9, 128.8, 128.6, 128.3, 128.1, 127.4, 126.8, 126.7, 126.6, 122.1, 51.9, 45.4, 34.1, 29.5, 27.4. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>26</sub>H<sub>23</sub>NNaO: 388.1672; found: 388.1664.



**5-Methyl-10-phenylphenanthridin-6(5H)-one (6d),** (silica gel: 200–300 mesh, solvent system: petroleum ether/ethyl acetate = 20:1-10:1), 42 mg, 76%, white solid, m.p. 188-189 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 8.63 (p, *J* = 3.6 Hz, 1H), 7.59 (d, *J* = 4.9 Hz, 2H), 7.51 – 7.29 (m, 8H), 6.82 – 6.75 (m, 1H), 3.82 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 161.8, 143.4, 139.4, 138.4, 136.2, 131.7, 129.1, 128.9, 128.8, 128.3, 127.5, 127.3, 127.1, 121.0, 119.4, 114.6, 30.4. HR-MS (ESI): calcd for [M+Na]<sup>+</sup> C<sub>20</sub>H<sub>15</sub>NNaO: 308.1046; found: 308.1051.
## 5. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR Spectra of Products



100 f1 (ppm)



















50.708

40.150 - 33.471

-21.961




































































S73











S78











S82

