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1. General method

In this work, all the synthetic steps were carried out under an inert argon atmosphere
using standard Schlenk and glovebox techniques. Commercial reagents were used
without any further purification after purchasing. THF and toluene were distilled on
sodium / benzophenone. (1), (3), (4), (5), (1a) were synthesized according to literature
procedures. 311 B1gH,(CH3CN), was synthesized by a modified method according to
literature reports.[S2) NMR spectra ('"H—, 3C—, and !'B—) were recorded on DRX—400
and DRX—500 at ambient temperature. CDCl; was used as deuterated reagent unless
specified. Mass spectra were measured with ESI-MS and APCI-HRMS (LCQ Fleet,
Thermo Fisher Scientific). The UV-vis absorption spectra were obtained by
SHIMADZU UV-2600. Photoluminescence spectra and decay curves were obtained
by using Edinburgh FLS980 fluorescence spectrophotometer equipped with a 450 W
xenon arc lamp, a picosecond pulsed LED (EPLED-380) and a microsecond flash-

lamp (uF900). The decay curves were fitted by F980 software determined from a

R(®)= ) Bexp(-t/1)

multi-exponential function: The absolute

photoluminescence quantum yields of compounds were collected on FLS980 with
integrating sphere and a supplied reference plug was used as a reference sample.
Photoluminescence spectra and excitation-emission maps were measured on the

HITACHI fluorescence spectrophotometer F-4700.
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Scheme S1. The synthetic routes towards car-m[6]CPP and nido-car-m|[6]CPP.
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Scheme S2. The synthetic routes towards car-m[8]CPP and nido-car-m[8]CPP.
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Scheme S3. The structure and identification of the compounds involved in this paper.
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6: To a toluene solution (60 mL) of 5 (100 mg, 0.2 mmol, 1 equiv), B1oH;2(CH;CN), (0.21 g, 1.0

mmol, 5 equiv) was added at room temperature. The resulting reaction mixture was refluxed for



three days. MeOH (20 mL) was then added to quench the reaction. Excessive solvent was removed
under vacuum, and the resulting solid was filtered and dissolved in CH,Cl,. After removal of
solvent, an orange red solid was afforded. The product was purified by automated flash alumina
gel chromatography (30% to 60% dichloromethane in petroleum ether) to give 6 as a yellow solid
(74 mg, 60%). '"H NMR (500 MHz, Chloroform-d) & 7.54 (d, J = 1.5 Hz, 2H), 7.46 — 7.37 (m,
16H), 7.10 (d, J = 8.6 Hz, 4H), 5.61 (s, 1H), 4.08 (s, 1H). 3C NMR (126 MHz, Methylene
Chloride-d?) 8 143.57, 141.69, 141.28, 139.84, 138.07, 137.10, 136.68, 134.92, 129.94, 128.61,
128.43, 128.31, 128.01, 122.02, 77.48, 61.09, 1.32. ''B NMR (160 MHz, Methylene Chloride-d?)
d -3.23(2B), -5.49(2B), -9.97(2B), -12.68(2B) (d, J = 329.0 Hz). APCI-MS (m/z): Calcd for
C3sH34B10 598.3664, found 598.3617.
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7. Tetrahydrofuran (40 mL) was added to the 100 mL scintillation vial containing 6 (50 mg, 0.0834
mmol, 1 equiv) and the vial was equipped with a stir bar and septa. Tetra-n-butylammonium fluoride
(0.42 mL, 0.42 mmol, 5 equiv, 1 M in tetrahydrofuran) was added to the reaction flask and the
resulting reaction mixture was refluxed for three days. The reaction mixture was allowed to cool to
room temperature. Excessive solvent was removed under vacuum, and the resulting solid was
filtered and dissolved in CH,Cl,. After removal of solvent, a yellow solid was afforded. The product
was purified by automated flash alumina gel chromatography (30% to 60% dichloromethane in
petroleum ether) to give 7 as a yellow solid.'"H NMR (500 MHz, Acetone-dg) 8 7.54 (s, 4H), 7.49
(d, J=9.1 Hz, 4H), 7.45 — 7.39 (m, 8H), 7.36 (d, J = 1.7 Hz, 2H), 7.15 (dq, J = 7.6, 2.2 Hz, 4H),
5.38 (t,J= 1.7 Hz, 1H), 3.45 —3.35 (m, 8H), 2.34 (s, 1H), 1.84 — 1.75 (m, 8H), 1.46 — 1.33 (m, 8H),
0.95 (t,J=7.4 Hz, 12H), -2.34 (s, 1H). 3C NMR (126 MHz, Acetone-d®)  149.10, 144.06, 142.56,
139.47, 138.27, 137.38, 137.06, 135.91, 130.10, 129.02, 128.79, 128.40, 128.06, 121.31, 68.03,
59.38, 26.13, 24.37, 20.35, 13.85. "B NMR (160 MHz, Acetone-d®) & -9.31(1B), -11.05(1B), -
14.53(1B) (d, J = 36.9 Hz), -17.47(1B), -18.65(1B), -20.41(1B), -23.68(1B), -33.45(1B), -
36.50(1B). ESI-MS (m/z): Calcd for C33H33B9 587.3456, found 587.3606.
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3a. 1a (2.5 g, 1.69 mmol, 1 equiv), 2 (1.03 g, 2.0 mmol, 1.2 equiv) and Sphos Pd Gen III (132 mg,
0.169 mmol, 0.1 equiv) were added to a 500 mL round bottom flask equipped with a stir bar. The
flask was evacuated (5 minutes) and purged with nitrogen 5 times. 1,4-dioxane and K;PO, were
sparged for at least 1 hour prior to use. The round bottom flask was equipped with a septum and
1,4-dioxane (280 mL) was added to the round bottom flask and the solution was sparged for 30
minutes. The round bottom flask was placed in a preheated oil bath (80 °C) for 10 minutes then
K3PO4 (40 mL, 2 M in deionized water) was added. The reaction was allowed to stir at 80 °C
overnight. The reaction mixture was allowed to cool to room temperature. It was then filtered
through a fritted suction funnel of Celite. The round bottom flask was rinsed with dichloromethane
and filtered through the Celite plug. The filtrate was added to a separatory funnel along with
deionized water (20 mL) and the product was extracted (3 x 100 mL) with ethyl acetate. The organic
layers were dried over sodium sulfate and concentrated to yield the crude product as a brown solid.
The product was purified by automated flash silica gel chromatography (0% to 40% ethyl acetate in
petroleum ether) to give the product as a white solid (2.0 g, 75%). 'H NMR (400 MHz, Chloroform-
d) 6 7.68 (d,J=1.6 Hz, 2H), 7.64 (s, 1H), 7.53 (d, J = 8.4 Hz, 4H), 7.43 (q, /= 8.2 Hz, 11H), 6.17
(s, 4H), 6.05 (d, J=10.1 Hz, 4H), 5.93 (d, /= 10.1 Hz, 4H), 3.71 (s, 1H), 1.16 (s,21H), 1.03 — 0.86
(m, 54H), 0.69 (q, J = 7.9 Hz, 12H), 0.59 — 0.47 (m, 24H). *C NMR (126 MHz, Chloroform-d) &
146.26, 145.90, 145.74, 141.20, 138.73, 133.03, 131.99, 131.12, 128.58, 127.30, 126.85, 126.14 (d,
J=17.1Hz), 125.93, 124.50, 107.27, 90.74, 71.64, 70.98, 69.69, 67.24, 27.06, 18.86, 11.49, 7.50 —
6.96 (m), 6.84 — 6.33 (m).

TBAF, THF,r.t.

4a. Tetrahydrofuran (40 mL) was added to the 100 mL scintillation vial containing 3a (2.0 g, 1.26
mmol, 1 equiv) and the vial was equipped with a stir bar and septa. Tetra-n-butylammonium
fluoride (12.6 mL, 12.6 mmol, 10 equiv, 1 M in tetrahydrofuran) was added to the reaction flask
and this was allowed to stir for 2 hours at room temperature. Deionized water (20 mL) was added
and the organic solvent was removed via rotavapor. The solid was collected by suction filtration
and rinsed with dichloromethane to yield the product as a white solid. The crude product was used
as is for the following reaction.



5a. SnCl,*H,0 (181 mg, 0.80 mmol) was added to a 100 mL round bottom flask equipped with a
stir bar and septum. Tetrahydrofuran (20 mL) was added followed by hydrochloric acid (0.13 mL,
1.6 mmol, 12 M). This was allowed to stir at room temperature for 30 minutes. H,SnCl, solution
(15 mL, 0.58 mmol, 2.2 equiv, 0.04 M) was added to the scintillation vial containing 4a (231.7
mg, 0.26 mmol, 1 equiv) and the reaction was allowed to stir for 1 hour at room temperature. The
reaction was quenched with saturated sodium bicarbonate (20 mL) and the product was extracted
with dichloromethane (3 x 20 mL). The organic layers were washed with brine (1 x 50 mL), dried
over sodium sulfate and concentrated to give the crude product as a white solid. The product was
purified by automated flash alumina gel chromatography (0% to 50% dichloromethane in
petroleum ether) to give 5a as a yellow solid (82 mg, 50% two steps). 'H NMR (500 MHz,
Chloroform-d) 6 7.72 (d, J = 1.7 Hz, 2H), 7.53 — 7.46 (m, 16H), 7.43 — 7.37 (m, 8H), 7.32 (d, J =
8.4 Hz, 4H), 6.35 (t,J= 1.7 Hz, 1H), 3.18 (s, 1H). 3C NMR (126 MHz, Chloroform-d) & 142.85,
140.41, 140.15, 138.64, 138.44, 138.19, 137.90, 137.53, 136.77, 128.82, 127.87, 127.67, 127.51,
127.31, 123.02, 83.88, 77.52. APCI-MS (m/z): Calcd for CsoHs, 632.2504, found 632.2493.
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6a: To a toluene solution (60 mL) of 5a (136 mg, 0.21 mmol,1 equiv), B;oH;2(CH;CN), (0.22 g,
1.07 mmol,5 equiv) was added at room temperature. The resulting reaction mixture was refluxed
for three days. MeOH (20 mL) was then added to quench the reaction. Excessive solvent was
removed under vacuum, and the resulting solid was filtered and dissolved in CH,Cl,. After
removal of solvent, an orange red solid was afforded. The product was purified by automated flash
alumina gel chromatography (0% to 30% dichloromethane in hexanes) to give 6a as a yellow solid
(110 mg, 68%). The solubility of the product was poor and its nuclear magnetism was not
characterized. ''B NMR (160 MHz, Chloroform-d) & -5.80. APCI-MS (m/z): Calcd for CsoH4,B 0



750.4290, found 750.4319.
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7a. Tetrahydrofuran (40 mL) was added to the 100 mL scintillation vial containing 6a (100 mg,
0.133 mmol, 1 equiv) and the vial was equipped with a stir bar and septa. Tetra-n-butylammonium
fluoride (0.67 mL, 0.67 mmol, 5 equiv, 1 M in tetrahydrofuran) was added to the reaction flask
and the resulting reaction mixture was refluxed for three days. The reaction mixture was allowed
to cool to room temperature. Excessive solvent was removed under vacuum, and the resulting solid
was filtered and dissolved in CH,Cl,. After removal of solvent, a yellow solid was afforded. The
product was purified by automated flash alumina gel chromatography (30% to 60%
dichloromethane in petroleum ether) to give 7a as a yellow solid.'"H NMR (500 MHz, Acetone-ds)
8 7.75 - 7.61 (m, 13H), 7.55 (d, J = 9.4 Hz, 12H), 7.38 (d, /= 7.6 Hz, 5H), 6.11 (s, 1H), 3.53 —
3.41 (m, 8H), 2.47 (s, 1H), 1.86 (p, J="7.7 Hz, 8H), 1.55 — 1.40 (m, 8H), 1.02 (t, /= 7.0 Hz, 12H),
-2.26 (s, IH).3C NMR (126 MHz, Acetone-d®) & 148.89, 142.73, 142.27, 139.92, 139.41, 138.70,
138.44, 138.10, 132.87, 129.48, 128.43 (d, /= 7.9 Hz), 128.16, 122.68, 59.38, 27.33, 24.38, 20.36,
13.86. 1'B NMR (160 MHz, Acetone-d®) & -9.27(1B), -10.90(1B), -14.10(1B), -17.19(1B), -
18.57(1B), -20.35(1B), -23.51(1B), -33.41(1B), -36.51(1B). ESI-MS (m/z): Calcd for CsoH4,By
739.4082, found 739.4233.
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Figure S1. The FL spectra of car-m[6]CPP, car-m[8]CPP, nido-car-m[6]CPP and nido-car-m[8]CPP in solid

state at room temperature.



Table S1. Photophysical properties of the carborane-substituted meta-nanohoops ([n]CPPs)(In
solid state).

Fluorescence
Compound
Aem¥nm DprP t/ns
car-m[6]CPP 516 11.41% 1.70
car-m[8]CPP 495 14.74% 1.46
nido-car-m[6]CPP 529 15.92% 1.69
nido-car-m[8]CPP 493 18.52% 2.10

2 In solid state at room temperature (A,=365 nm). PAbsolute values.

II. Quantum yields determination: Absolute quantum yields of all compounds in

THF/water or in solid state were measured by employing an integrating sphere.

The Principle of Absolute Quantum Yield Measurements
The absolute fluorescence quantum yield, #, is, by definition, the ratio of the number of photons

emitted to the number of photons absorbed:

o

There are two different methods for the measurement of the absolute fluorescence quantum yield:
“Direct Excitation” measurements and “Direct & Indirect Excitation” measurements.

With “Direct Excitation” measurements one records the scatter and the emission of the sample being
directly exited by the radiation from the excitation monochromator only, whereas with “Direct and
Indirect Excitation” one also records the emission of the sample while it is in a position where it is

only indirectly excited by excitation radiation bouncing within the sphere.

“Direct Excitation” Method

This method only requires two experimental setups, see figure 1.

Note that with the “Direct Excitation” method the emission measurement actually contains the
information of both direct and indirect excitation, as photons that pass the sample in the direct

excitation beam may still be absorbed after scattering in the sphere.

(A) Exit (B) Exit

Entrance
Entrance

Figure 1. Two different measurement configurations required for Direct Excitation measurements:



(A) reference sample (solvent only) in sample position (1); (B) test sample in position 1 (position 2

remains empty for both measurements.)
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Figure 2. Spectral scans of the excitation scatter region or S-region (peaks on the left) and the
emission region (E-region) of the sample and the solvent. The indices “A” and “B” refer to the
experimental setup illustrated in Figure 1. Note that the quantities S4, Sg, Ea, and Eg refer to the
integral of the scans.

The absolute fluorescence quantum yield, calculated with the “Direct Excitation” method is
calculated as follows:

o EB —E 4

2

EA(}) and SA(A), as well as Eg(A) and Sg(A) may be measured in four individual scans. However, it
is often convenient to measure these spectra in two scans only. For the calculation of the integrals,
the selection of the integral regions, and the final calculation of #7pgx. use the quantum yield wizard
that is supplied with the F980 software.
If the sphere background, EA(A), is sufficiently low the measurement of this region may be omitted
to save measurement time. In this case the equation degrades to:

IV. PL Spectra data: UV-vis absorption spectra were recorded with Shimadzu UV-3600
spectrophotometers. FL and PL spectra were recorded on a Hitachi F—7000 fluorescence
spectrophotometer.



0.5

car-m[6]CPP
car-m[8]CPP
0.4 -
@ 0.3
£
<
2
St
2
< 0.2 1
<
0.1
0.0 T T T T T T 1
300 350 400 450
Wavelength (nm)

Figure S2. The absorption spectra of car-m[6]CPP and car-m[8]CPP in DCM (1.0 x 107> M) at

room temperature.
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Figure S3. The absorption spectra of nido-car-m|[6]CPP and nido-car-m[8]CPP in THF (1.0 x
10-> M) at room temperature.

V. Quantum chemical calculations: Geometries of all complexes were optimized using

density functional theory (DFT) method. The electronic transition energies including electron



correlation effects were computed by TD—DFT method using B3LYP functional (TD—B3LYP). The
6—31G(d, p) basis set was used to treat all atoms. All calculations described here were performed

by using Gaussian 16 program.[S3]

VI. Cyclic voltammetry (CV): Electrochemical determination: Cyclic Volta metric
experiments were carried out with an IM6ex (Zahner) using three electrode cell assemblies. All
measurements were carried out in a one-compartment cell under Argon, equipped with a glassy-
carbon working electrode, a platinum wire counter electrode, and a Ag / Ag* reference electrode
under a scan rate of 100 mV s™1. The supporting electrolyte was a 0.10 mol L™! acetonitrile solution
of tetrabutyl-ammonium hexafluorophosphate (BusNPF¢). Each oxidation potential was calibrated
with ferrocene as a reference.

Table S2. The electrochemical properties data sheet of carborane modified mCPPs.

Compound Eonse®™ | HOMO (eV) | Across-poine (am) | LUMO (eV) | E, (eV)
car-m[6]CPP 077 | -5.57 400 247 3.10
car-m[8]CPP 071 | -5.51 387 231 3.20
nido-car- m[6]CPP | 0.62 -5.42 410 -2.40 3.02
nido-car- m[8]CPP | 0.71 -5.51 395 -2.37 3.14

[a] Data in degassed CH,Cl, at 298 K. [b] HOMO (eV) = —e (Eqpset®™ +4.8), E; = 1240 / A, LUMO (eV) = E, +

HOMO.
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Figure S4. The 'H-NMR (500 MHz, Chloroform-d) spectrum of compound 6.
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Figure S5. The *C-NMR (126 MHz, Methylene Chloride-d?) spectrum of compound 6.
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Figure S6. The '"B-NMR (160 MHz, Methylene Chloride-d?) spectrum of compound 6.
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Figure.S11. The HRMS spectrum of compound 7.
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Figure S12. The 'H-NMR (500 MHz, Chloroform-d) spectrum of compound 3a.
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Figure S13. The *C-NMR (126 MHz, Chloroform-d) spectrum of compound 3a.
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Figure S14. The 'H-NMR (500 MHz, Chloroform-d) spectrum of compound 5a.
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Figure S15. The 3*C-NMR (126 MHz, Chloroform-d) spectrum of compound 5a
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Figure S16. The HRMS spectrum of compound Sa.
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Figure S17. The "B-NMR (160 MHz, Acetone-d®) spectrum of compound 6a.
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Figure S18. The HRMS spectrum of compound 6a
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Figure S19. The 'H-NMR (500 MHz, Acetone-d®) spectrum of compound 7a.
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Figure S20. The 3C-NMR (126 MHz, Acetone-d®) spectrum of compound 7a
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Figure S21. The 'B-NMR (160 MHz, Acetone-d®) spectrum of compound 7a.
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Figure S22. The HRMS spectrum of compound 7a.



