Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

In Situ Mössbauer Spectroscopy Confirms Fluoroethylene Carbonate Stabilizes Fe⁴⁺ in Charged NaFeO₂

Iddrisu Abdul Razak,^{1,2,+} Dhilip Kanna Ashok Kumar,^{1,+} Bomin Li,¹ Emma Anne Lynch,¹ Dennis Brown,² Yingwen Cheng^{1,*}

¹ Department of Chemistry, University of Tennessee, Knoxville, 37996

² Department of Physics, Northern Illinois University, DeKalb IL 60115

E-mail: <u>ycheng@utk.edu</u>

⁺Authors with equal contribution

Experimental Methods

<u>Materials preparation and characterization</u>: The α -NaFeO₂ powder was prepared by solid-state reactions. A typical synthesis starts with mixing 15.2 mg Na₂O₂ (with 5 % excess compared with stoichiometric quantity) and 24.8 mg Fe₂O₃ via a high energy ball milling (SPEX Mill) for one hour. The milled powders were collected and pelleted and calcined at 650°C for 12 hours in air with a ramp rate of 3°C/minute. The calcined pellet was quickly transferred to a glove box and grounded into fine powder using a mortar and a pestle while inside glove box.

X-ray diffraction analysis was carried out on a Rigaku MiniFlex X-ray diffractometer operating at 30 kV and 15 mA using Cu K α radiation (λ =0.15405 nm). Scanning electron microscope (SEM) analysis were collected using a Zeiss Merlin FE-SEM microscope; and EDS spectra were collected using a Bruker energy dispersive X-ray detector. <u>Electrochemical tests</u>: cathodes were prepared by mixing NaFeO₂ powder with super P carbon black and polytetrafluoroethylene (PTFE) in the ratio 8:1:1 and rolling as a free-standing film. These electrodes were vacuum dried overnight and then cut into 12mm diameter discs. Typical mass loading of NaFeO₂ was ~20 mg/cm⁻². The electrolytes employed include NaPF₆ in propylene carbonate (with and without 5% FEC additive) and NaClO₄ in propylene carbonate (with and without 5% FEC additive). The propylene carbonate (PC) solvent was dried over a

molecular sieve prior to electrolyte preparation. The separator was glass fiber disc, and the anode was a piece of sodium metal foil. Batteries were assembled both as standard coin cells and as homemade in-situ cells suitable for Mössbauer spectroscopy analysis. All cell assembly was performed inside an Ar filled glove box.

⁵⁷Fe Mössbauer spectra were recorded by a Kr proportional counter in transmission mode using a ⁵⁷Co/Rh radiation source mounted on a drive where the velocity varied sinusoidally. The isomer shifts were given relative to α -Fe and the velocity was calibrated using α -Fe foil. All spectra were measured under ambient with a velocity range of \pm 8.0mm s⁻¹. The data were fitted to Lorentzian functions using a least square fitting route to find the Mössbauer parameter values regarding the isomer shift (IS) and the quadrupole splitting (QS).

Galvanostatic battery charge-discharge tests were performed using a Neware battery analyzer at 10 mA/g at room temperature. The voltage window was 2.0-3.8V.

Supplemental Tables

Table S1: Rietveld refinement parameters for the XRD of NaFeO₂ powders synthesized in this work.

	NaFeO ₂					
	Space group)	Unit cell	Unit cell Pa		
			parameter			
	R-3m		а		3.027392Å	
			b		3.027392Å	
			с		16.104240Å	
			cell volume		127.823Å ³	
			α		90.000°	
			β		90.000°	
			γ		120.000°	
			R-factor $(R_p)\%$		1.81	
			R-factor (R_{wp}) %		3.05	
atom	Wyckoff	х	у		Z	Occ.
Na	3a	0	0		0	0.17882
Fe	3b	0	0		0.500	0.08275
0	6c	0	0		0.223	0.08208

Table S2: Mössbauer parameters of Fe sites in pristine $NaFeO_2$ and its electrodes charged to the respective voltages in the 1.0M $NaPF_6$ in PC electrolyte, before and after a 24-hour resting at the open circuit.

Pristine NaFeO ₂						
site	$\delta (\text{mm s}^{-1})$	$\Delta EQ (mm s^{-1})$	area (%)	width		
Fe ³⁺	0.364(1)	0.485(1)	100	0.288(1)		

voltage (V)	site	$\delta \text{ (mm s}^{-1}\text{)}$	$\Delta EQ \text{ (mm s}^{-1}\text{)}$	area (%)	width
3.4V	Fe ³⁺ O ₆	0.33(3)	0.69(1)	75.0	0.405(4)
	Fe ⁴⁺ O ₆	0.00(2)	0.51(2)	25.0	0.366(9)
3.6V	Fe ³⁺ O ₆	0.34(2)	0.73(4)	64.1	0.410(5)
	Fe ⁴⁺ O ₆	0.00(3)	0.62(1)	35.9	0.368(7)
3.8V	Fe ³⁺ O ₆	0.34(3)	0.78(4)	60.6	0.407(5)
	Fe ⁴⁺ O ₆	-0.01(2)	0.63(2)	39.4	0.390(7)

3.4V	Fe ³⁺ O ₆	0.32(2)	0.65(3)	86.4	0.423(4)
	Fe ⁴⁺ O ₆	-0.05(3)	0.42(2)	13.6	0.28(1)
3.6V	Fe ³⁺ O ₆	0.33(3)	0.74(5)	73.3	0.407(4)
	Fe ⁴⁺ O ₆	0.10(2)	0.56(3)	26.7	0.389(8)
3.8V	Fe ³⁺ O ₆	0.34(2)	0.79(2)	68.5	0.435(5)
	Fe ⁴⁺ O ₆	0.01(5)	0.64(3)	31.5	0.391(9)

Table S3: Mössbauer parameters of Fe sites in NaFeO₂ electrodes charged to 3.8V in the 1.0M NaPF₆ in PC electrolyte with 5% FEC additive, before and after a 24-hour resting at the open circuit.

NaFeO ₂ in 1.	$0M NaPF_6$	/PC + 5% FEC	2.		
voltage (V)	site	$\delta (mm s^{-1})$	$\Delta EQ (mm s^{-1})$	area (%)	width
3.8V	Fe ³⁺ O ₆ Fe ⁴⁺ O ₆	0.37(2) 0.06(3)	0.78(5) 0.65(3)	58.4 41.6	0.45(2) 0.49(2)
after 24 hours	s rest				·
3.8V	Fe ³⁺ O ₆ Fe ⁴⁺ O ₆	0.36(4) 0.06(2)	0.76(5) 0.64(3)	59.1 40.9	0.47(2) 0.52(2)

Table S4: Mössbauer parameters of Fe sites in NaFeO₂ electrodes charged to 3.8V in the 1.0M NaClO₄ in PC electrolyte, before and after a 24-hour resting at the open circuit.

NaFeO ₂ in 1.0	M NaClO	₄ /PC			
voltage (V)	site	$\delta (\text{mm s}^{-1})$	$\Delta EQ (mm s^{-1})$	area (%)	width
3.8	$\frac{\mathrm{F}\mathrm{e}^{3+}\mathrm{O}_{6}}{\mathrm{F}\mathrm{e}^{4+}\mathrm{O}_{6}}$	0.35(1) 0.00(3)	0.79(3) 0.67(3)	61.8 38.2	0.405(5) 0.357(6)
after 24 hours	rest	·	·	·	·
3.8	Fe ³⁺ O ₆ Fe ⁴⁺ O ₆	0.31(3) 0.35(5)	0.88(2) 0.47(2)	50.4 49.6	0.503(2) 0.278(5)

Table S5: Mössbauer parameters of Fe sites in NaFeO₂ electrodes charged to the respective voltages in the 1.0M NaClO₄ in PC electrolyte with 5% FEC electrolyte, before and after a 24-hour resting at the open circuit. 1.

NaFeO ₂ in 1.	.0M NaClC	$D_4/PC + 5\% FE$	EC		
voltage (V)	site	$\delta (mm s^{-1})$	$\Delta EQ (mm s^{-1})$	area (%)	width
3.4	Fe ³⁺ O ₆	0.33(4)	0.80(4)	73.4	0.494(7)
	Fe ⁴⁺ O ₆	-0.01(2)	0.66(3)	26.6	0.42(1)
3.6	Fe ³⁺ O ₆	0.34(3)	0.80(2)	68.7	0.480(7)
	Fe ⁴⁺ O ₆	0.00(1)	0.66(4)	31.3	0.43(1)
3.8	Fe ³⁺ O ₆	0.35(3)	0.79(3)	60.7	0.438(6)
	Fe ⁴⁺ O ₆	0.00(2)	0.66(3)	39.3	0.419(8)
after 24 hour	s rest				
3.4	Fe ³⁺ O ₆	0.33(2)	0.81(3)	75.1	0.502(7)
	Fe ⁴⁺ O ₆	0.00(1)	0.67(2)	24.9	0.402(7)
3.6	Fe ³⁺ O ₆	0.34(1)	0.81(3)	69.6	0.471(6)
	Fe ⁴⁺ O ₆	-0.01(2)	0.68(3)	30.4	0.42(1)
3.8	Fe ³⁺ O ₆	0.34(3)	0.79(2)	61.8	0.451(7)
	Fe ⁴⁺ O ₆	0.01(2)	0.65(3)	38.2	0.43(1)

Supplemental Figures

Figure S1: a) SEM image of the $NaFeO_2$ powders, b) graphic representation of its crystal structure derived from the refinement results.

Figure S2: EDS spectrum and atomic ratio quantification of the NaFeO₂ powders employed in this work.

Figure S3: In situ Mössbauer spectra and the fitting results of $NaFeO_2$ cathodes acquired at a) holding at 3.4V and b) after resting for 24 hours at open circuit after charging to 3.4V; c) holding at 3.6V and d) after resting for 24 hours at open circuit, after charging to 3.6V. The electrolyte was 1.0M NaPF6 in PC without FEC additive.

Figure S4: In situ Mössbauer spectra and the fitting results of NaFeO₂ cathodes acquired at a)

holding at 3.4V and b) after resting for 24 hours at open circuit after charging to 3.4V; c) holding at 3.6V and d) after resting for 24 hours at open circuit, after charging to 3.6V; e) holding at 3.6V and f) after resting for 24 hours at open circuit, after charging to 3.8V; The electrolyte was 1.0M NaClO₄ in PC with 5% FEC additive.

Figure S5: In situ Mössbauer spectra and the fitting results of NaFeO₂ cathodes acquired at a) holding at 3.8V and b) after resting for 24 hours at open circuit, after charging to 3.8V; The electrolyte was 1.0M NaClO₄ in PC without FEC additive. Two distinct Fe³⁺ species were observed after 24 hours, and the blue curve represents Fe³⁺ in small lattice distortion (low strain environment; small quadrupole splitting) while the green curve represents high strain environment (large lattice distortion; large quadrupole splitting).

Figure S6: comparison of voltage profiles for $NaFeO_2$ in the 1.0M $NaPF_6/PC$ electrolyte with and without FEC additive during charging, resting at OCV and subsequent discharging, the current density was 10 mA/g.