Supporting information

Copper-Catalyzed Chemoselective C-H

Functionalization/Dearomatization Sequence: Direct Access to

Indole-Based Spirocyclic Scaffolds

Yuting Zhao, [†]Xin Ji, [†]Yuanjing Xiao^{*†}, Xingxing $Wu^{*^{\dagger}}$ and Lu Liu^{*†‡}

[†]School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China

[¶]State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and

Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi

District, Guiyang, 550025, P. R. China;

[‡]Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, P. R. China

E-mail:yjxiao@chem.ecnu.edu.cn; wuxx@gzu.edu.cn; lliu@chem.ecnu.edu.cn.

Table of Contents

1.	Gener	al Information	
2.	Optimization of reaction conditions		
3.	Copper catalyzed carbocyclization of 4a		
4.	General procedure for the synthesis of 1 and 2		
	4.1	Synthesis of diazo compound 1	S8
	4.2	Synthesis of indoles 2	S9
5.	General procedure for the synthesis of spirocyclic 3		
6.	Gram scale preparation of 3a and synthetic application		
	6.1	Gram scale preparation of spirocyclic 3a	S25
	6.2	Synthetic application	S25
7.	The studies of biological activity		
8.	References		
9.	X-ray Crystal data for 6aS31		
10.	NMR and HRMS spectra of new compounds		

1. General Information

Unless otherwise noted, all air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under nitrogen. All reactions were carried out under a nitrogen atmosphere; materials obtained from commercial suppliers were used directly without further purification. Solvents were distilled following standard procedures before use. Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed on silica gel 60 (particle size 300-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate.

Dichloromethane (CH₂Cl₂), Trichloromethane, dichloroethane and ethyl acetate were freshly distilled from CaH₂; tetrahydrofuran (THF), toluene and ether were dried with sodium benzophenone and distilled before use.

¹H NMR spectra were recorded on a BRUKER 500 (500 MHz) or BRUKER 600 (600 MHz) spectrometer in CDCl₃. Chemical shifts are reported in ppm with tetramethylsilane (TMS: 0 ppm) with the solvent resonance as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. ¹³C NMR spectra were recorded on a BRUKER 500 (125 MHz) or BRUKER 600 (150 MHz) spectrometer in CDCl₃ with complete proton decoupling. Chemical shifts are reported in ppm with the deuterium solvent as the internal standard (e.g. CDCl₃: 77.0 ppm)

2. Optimization of reaction conditions

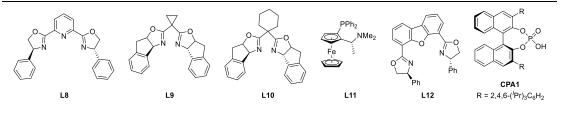
Supplementary Table 1. Optimization of reaction conditions^a

Br	$H_{Br} \xrightarrow{N_2} (Br) \xrightarrow{n_{Bu}} + \underbrace{Cat., L}_{solvent, 40 °C} (Bu \xrightarrow{n_{Bu}} + \underbrace{Cat., L}_{solvent, 40 °C} (Bu \xrightarrow{n_{Bu}} + \underbrace{H}_{o} + $				
	$R_1 \xrightarrow{R_2} K_1$	R_4 R_3	R_4 R_3		
	L1 R ₁ = Me, R ₂ = Me L2 R ₁ = H, R ₂ = H L3 R ₁ = H, R ₂ = OMe	L4 R ₃ = Me, R L5 R ₃ = Ph, R L6 R ₃ = Me, R	4 = H	L7	
Entry	Cat.	Solvent	L	dr ^b	$\operatorname{Yiled}^{b}(\%)$
1	Cu(OTf) ₂	CHCl ₃	_	3a 2.6:1	3a/4a 44/0
2	Sc(OTf) ₃	CHCl ₃	-	-	-
3	AgOTf	CHCl ₃	-	1.2:1	5/5
4	Fe(OTf) ₃	CHCl ₃	-	-	-
5	CuCl	CHCl ₃	-	4.4:1	12/5
6	CuCl ₂	CHCl ₃	-	1.5:1	10/0
7	L'AuOTf	CHCl ₃	-	1.0:1	12/0
8	Rh ₂ (OAc) ₄	CHCl ₃	-	-	-
9	Cu(OTf) ₂	CHCl ₃	L2	5.5:1	40/22
10	Cu(OTf) ₂	CHCl ₃	L3	4.4:1	48/0
11	Cu(OTf) ₂	CHCl ₃	L4	1.5:1	30/0
12	Cu(OTf) ₂	CHCl ₃	L5	1.2:1	23/0
13	Cu(OTf) ₂	CHCl ₃	L6	-	-
14	Cu(OTf) ₂	CHCl ₃	L7	2.8:1	7/0
15	Cu(OTf) ₂	CHCl ₃	L1	7.3:1	75/5
16	Cu(OTf) ₂	DCE	L1	7.6:1	60/0
17	Cu(OTf) ₂	CCl_4	L1	-	-
18	Cu(OTf) ₂	DCM	L1	8.0:1	85/0
19	Cu(OTf) ₂	PhCl	L1	4.6:1	64/0
20	Cu(OTf) ₂	toluene	L1	4.0:1	50/0

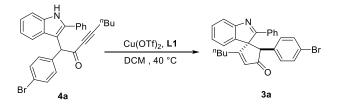
^{*a*}Unless otherwise noted, all reactions were performed with **1a** (0.2 mmol), **2a** (0.1 mmol), Cat. (10 mol%), **L** (15 mol%) in solvent (2.0 mL) at 40 °C under Ar atmosphere for 2 h; The yields were determined by crude ¹H NMR using CH₂Br₂ as internal standard. L' = $(2,4-'Bu_2PhO)_3P$.

Initially, α -alkynyl- α -diazoketones 1a and 2-phenylindole 2a were selected as model substrates for reaction screening. Initially, 1a (2.0 equiv) and 2a were subjected to the reaction in CHCl₃ at 40 °C by using Cu(OTf)₂ as catalyst, spirocyclic product **3a** was indeed formed in 44% yield with 2.6:1 diastereoselectivity (Table 1, entry 1). Among the catalysts tested, Cu(OTf)₂ was found to be optimal (Table 1, entries 1-8) in terms of the yield of spirocyclic product **3a**. To further improve the yield and diastereoselectivity, we then explored the effect of the types of ligand on the reaction (entries 9-15). Using 4,7-dimethoxy-1,10-phenanthroline (L3) as a ligand, the dr value and yield of product 3a were slightly improved (entry 10). When the ligand species was switched to 1,10phenanthroline (L2), although the dr value of product 3a was further increased to 5.5:1, however, the by-product, C-H functionalization product 4a was obtained in 22% yield (entry 9). Continuing to screen the ligand species, we found that when the 3,4,7,8tetramethyl-1,10-phenanthroline (L1) ligand was used, product 3a achieved 75% yield and the dr value reached 7.3:1, only a little by-product 4a was generated (entry 15). After screening the solvents, DCM gave the best results, and the yield of product 3a was improved to 85% with 8.0:1 dr, without by-product 4a formed (entry 18, for more details, please see Table 2 and Table 3).

Br O 1a	^{"Bu} + H - Ph -		Br Me Me	Me N L1
Entry	Cat.	Solvent (x ml)	dr ^b	Yiled ^b (%)
			3 a	3a/4a
1	$Cu(OTf)_2^c$	CHCl ₃ (2.0 mL)	4.5:1	22/8
2	$Cu(OTf)_2^d$	CHCl ₃ (2.0 mL)	3.8:1	70/0
3	$Cu(OTf)_2^e$	CHCl ₃ (2.0 mL)	-	-
4	Cu(OTf) ₂ ^f	CHCl ₃ (2.0 mL)	1.4:1	66/0
5	Cu(OTf) ₂ ^g	CHCl ₃ (2.0 mL)	3.9:1	75/0
6	$Cu(OTf)_2^h$	CHCl ₃ (2.0 mL)	-	-
7	$Cu(OTf)_2^i$	CHCl ₃ (2.0 mL)	6.2:1	60/0
8	Cu(OTf)2 ^j	CHCl ₃ (2.0 mL)	5.8:1	70/0
9	$Cu(OTf)_2^k$	CHCl ₃ (2.0 mL)	7.3:1	68/0
10	Cu(OTf) ₂	CHCl ₃ (1.0 mL)	6.2:1	72/0
11	Cu(OTf) ₂	CHCl ₃ (4.0 mL)	7.2:1	66/0


Supplementary Table 2. Optimization of reaction conditions^a

^{*a*}Unless otherwise noted, all reactions were performed with **1a** (0.2 mmol), **2a** (0.1 mmol), Cat. (10 mol%), **L1** (15 mol%) in solvent (2.0 mL) at 40 °C under Ar atmosphere for 2 h; ^{*b*}Yields were determined by crude ¹H NMR using CH₂Br₂ as internal standard; ^{*c*}Reaction stirred at 30 °C; ^{*d*}Reaction stirred at 50 °C; ^{*e*}Using Cat. 5 mol%; ^{*f*}Using Cat. 20 mol%; ^{*g*}Using **L1** 10 mol%; ^{*h*}Using **L1** 20 mol%; ^{*i*}Using **1a** (0.1 mmol); ^{*j*}Using **1a** (0.25 mmol); ^{*k*}Reaction stirred for 3 h.

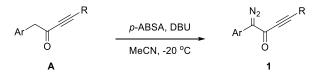

N_2 ″Bu ″Bu Cu(OTf)₂, L DCM, 40 °C B ò В 1a 2a 3a 4a $\mathrm{dr}^{\,b}$ Yiled $^{b}(\%)$ $er^{c}(\%)$ L Entry 3a 3a 3a/4a 1 L8 49:51 1.2:1 27/5 2 L9 55:45 1.3:1 19/3 3 L10 56:44 1.3:1 32/7 4 L11 52:48 5.5:1 27/45 48:52 L12 2.3:1 27/10 CPA1 45:55 >20:1 27/9 6

Supplementary Table 3. Optimization of reaction conditions^a

^{*a*}Unless otherwise noted, all reactions were performed with **1a** (0.2 mmol), **2a** (0.1 mmol), Cat. (10 mol%), **L** (15 mol%) in solvent (2.0 mL) at 40 °C under Ar atmosphere for 2 h; ^{*b*}Yields were determined by crude ¹H NMR using CH_2Br_2 as internal standard; ^{*c*}The er was determined by HPLC.

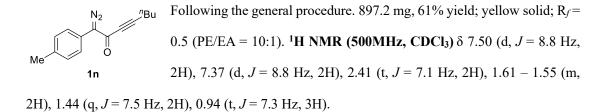
3. Copper catalyzed carbocyclization of 4a

1-(4-bromophenyl)-1-(2-phenyl-1*H*-indol-3-yl)oct-3-yn-2-one (4a)


H Ph ⁿBu O Br 4a In a dried glass tube, a mixture of $Cu(OTf)_2$ (7.2 mg, 10 mol%), 1,10-phenanthroline (5.4 mg, 15 mol%) in DCM (2 mL) was stirred at room temperature for 15 mins. Subsequently, indoles **2** (0.2 mmol, 1.0 equiv.) was added to the reaction mixture at room

temperature, and diazo compounds 1 (0.4 mmol, 2.0 equiv.) was dissolved in 2 mL DCM and added to the reaction mixture. Then the resulting mixture was continually stirred at 40 °C for 1 h. The mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EA = 30:1 to 10:1) to afford the desired product yellow oil 4a (19.7 mg, 21%) and 3a (34.7 mg, 37%). Subsequently, in a dried glass tube, a mixture of Cu(OTf)₂ (1.5 mg, 10 mol%), 3,4,7,8tetramethyl-1,10-phenanthroline (1.5 mg, 15 mol%) in DCM (0.5 mL) was stirred at room temperature for 15 mins. Subsequently, 4a (0.04 mmol, 1.0 equiv.) was dissolved in 0.5 mL DCM and added to the reaction mixture. Then the resulting mixture was continually stirred at 40 °C for 2 h and 4a was consumed completely determined by TLC analysis. The mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EA = 30:1 to 10:1) to afford the desired product 3a. And it was found that 4a was almost completely converted to the cyclization product **3a** (18.2 mg, 92%). **4a** : ¹H NMR (600 MHz, CDCl₃) δ δ 8.35 (s, 1H), 7.49 – 7.37 (m, 9H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.12 (d, *J* = 8.2 Hz, 2H), 7.07 (t, *J* = 7.6 Hz, 1H), 5.42 (s, 1H), 2.09 – 2.13 (m, 2H), 1.26 – 1.22 (m, 2H), 1.07 (h, J = 7.3 Hz, 2H), 0.75 (t, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) & 185.4, 138.0, 136.7, 136.0, 132.1, 131.3, 131.0, 129.0, 128.5, 128.4, 127.7, 122.6, 121.0, 121.0, 120.4, 111.0, 107.3, 96.4, 81.5, 56.7, 29.3, 21.5, 18.6, 13.4; HRMS (ESI) calculated for [C₂₈H₂₄BrNNaO] [M+Na]⁺: 492.0933, found: 492.0935.

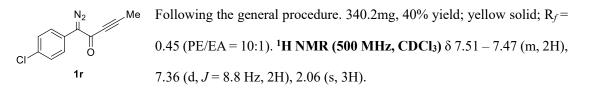
4. General procedure for the synthesis of 1 and 2


4.1 Synthesis of diazo compound 1

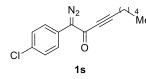
Under argon atmosphere, an oven dried round-bottom flask was charged with diazo precursor (5 mmol, 1 equiv.) and *p*-acetamidobenzenesulfonyl azide (*p*-ABSA, 6 mmol, 1.2 equiv.) in acetonitrile (20 mL). To this solution at 0 °C was added 1,8-dizaobicyclo [5.4.0]undec-7-ene (7.5 mmol, 1.5 equiv.) in one portion. After stirring at 0 °C for 5 minutes, the reaction was quenched with saturated sodium bicarbonate solution. Diethyl ether was added and layers were separated. The aqueous layer was extracted with diethyl ether for two more times. The combined organic layers were washed with brine, dried over magnesium sulfate, filtered through a plug of silica gel and concentrated in vacuo. The crude residue was purified by flash chromatography.

All of the known diazo **1** were prepared according to the literature procedures. ^[1] Characterization of new diazo **1n**, **1p**, **1q**, **1r** and **1s** are listed below.

1. 1-diazo-1-(p-tolyl)oct-3-yn-2-one (1n)


2. 1-(3-bromophenyl)-1-diazooct-3-yn-2-one (1p)

^{N2} ⁿBu Following the general procedure. 768.8 mg, 45% yield; yellow oil; $R_f = 0.5$ (PE/EA = 10:1). ¹H NMR (600 MHz, CDCl₃) δ 7.75 (t, J = 1.7 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 7.9 Hz, 1H), 7.29 – 7.25 (m, 1H), 2.41 (t, J = 7.1 Hz, 2H), 1.60 – 1.55 (m, 2H), 1.48 – 1.40 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H); HRMS (ESI)

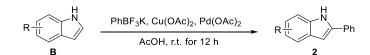

3. 1-diazo-1-(m-tolyl)oct-3-yn-2-one (1q)

Following the general procedure. 340.2mg, 40% yield; yellow oil;
$$R_f = 0.45$$

(PE/EA = 10:1).¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.32 (m, 2H), 7.28 (t,
J = 7.7 Hz, 1H), 7.05 (d, J = 7.5 Hz, 1H), 2.40 (t, J = 7.1 Hz, 2H), 2.36 (s, 3H),
1.60 – 1.54 (m, 2H), 1.47 – 1.40 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H); HRMS (ESI) calculated for
[C₁₅H₁₆N₂NaO] [M+Na]⁺: 263.1155, found: 263.1149.

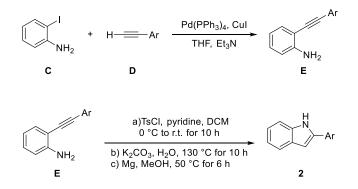
4. 1-(4-chlorophenyl)-1-diazopent-3-yn-2-one (1r)

5. 1-(4-chlorophenyl)-1-diazonon-3-yn-2-one (1s)



Following the general procedure. 1.0076g, 52% yield; yellow solid; R_f = 0.5 (PE/EA = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 8.8 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 2.40 (t, J = 7.1 Hz, 2H), 1.63 - 1.58

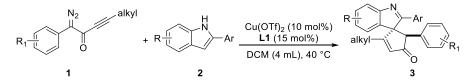
(m, 2H), 1.44 – 1.30 (m, 4H), 0.92 (t, *J* = 7.1 Hz, 3H). **HRMS** (ESI) calculated for [C₁₅H₁₅ClN₂NaO] [M+Na]⁺: 297.0765, found: 297.0757.


4.2 Synthesis of indoles 2

Method A:

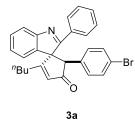
Synthesis compound **2** with reference to Chen's report^[2]. A mixture of indole (2 mmol), $Pd(OAc)_2$ (22.4 mg, 5 mol%), $Cu(OAc)_2$ (36.4 mg, 10 mol%), potassium phenylfluoroborate (3 mmol), acetic acid (10 mL) was stirred at room temperature under air for 12 h. Afterward, the reaction mixture was filtered through a plug of Celite and the filtrate was evaporated. The resulting oil was dissolved in ether (25 mL) and washed with aqueous NaHCO₃ (2×15 mL). The organic layer was dried with Na₂SO₄

and concentrated. The residue was purified by flash column chromatography to afford the corresponding product **2**. Compound **2k** synthesed according to **method A**. **Method B**:



To a solution of 2-Iodoaniline (2.0 mmol) in dry Et_3N and THF (v/v = 1:1, 3 mL) **D** (2.0 mmol), Pd(PPh₃)₄ (115.6 mg, 5 mol%) and CuI (4.0 mg, 2 mol%) was added. The mixture was heated at reflux for 4 h. The solvent was removed under reduced pressure and the residue was filtered through Celite using toluene as solvent. The solvent was removed and the crude residue was purified by flash chromatography on silica gel.

Then the obtained **E** taken in DCM (20 mL) was added with pyridine (3 equiv.) followed by tosyl chloride (1.3 equiv.) at 0 °C over a period of 15 mins. After addition completes, reaction stirred at RT for 12 h. After reaction completed (monitored by TLC), reaction mass quenched with ice-cold water and extracted into DCM. The obtained crude material passed through flash column chromatography to give pure product. To a solution of K_2CO_3 (0.15 equiv.) in water (1.5 mL) was added to the product obtained in one step up. The resulting mixture was stirred vigorously at 130 °C in a sealed tube under an argon atmosphere for 10 h. The reaction solution was cooled to room temperature and extracted by DCM (three times), and the organic phase was collected. Pure product obtained by flash chromatography on silica gel. To a solution of the product obtained in one step up in MeOH (0.05 M) was added Mg (15 equiv.). After being stirred at 50 °C for 6 h, the reaction mixture was poured into aq. NH₄Cl and then the product was extracted with DCM (three times). The combined organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was


purified by column chromatography on silica gel to afford **2**. Compound **2a**, **2b**, **2c**, **2d**, **2e**, **2f**, **2g**, **2h**, **2i** and **2j** synthesed according to **method B**^[3].

5. General procedure for the synthesis of spirocyclic 3

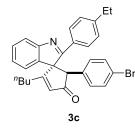
General procedure 1 (GP-1): In a dried glass tube, a mixture of Cu(OTf)₂ (7.2 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) in DCM (2 mL) was stirred at room temperature for 15 mins. Subsequently, indoles **2** (0.2 mmol, 1.0 equiv.) was added to the reaction mixture at room temperature, and diazo compounds **1** (0.4 mmol, 2.0 equiv.) was dissolved in 2 mL DCM and added to the reaction mixture. Then the resulting mixture was continually stirred at 40 °C for 2 h and **2** was consumed completely determined by TLC analysis. The dr of the product was calculated by crude ¹H NMR. The mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EA = 60:1 to 30:1 or PE/EA = 50:1 to 20:1) to afford the desired product **3**.

(1*R*,5*R*)-5-(4-bromophenyl)-2-butyl-2'-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (3a)

The general procedure was followed using **1a** (121.3 mg, 0.4 mmol, 2.0 equiv.) and **2a** (37.5 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.2 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by column chromatography (PE/EA = 60:1 to 30:1), **3a** (dr = 9.0:1, 62.4 mg,

83%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ [8.07 – 8.03 (m, 1.8H), 7.76 – 7.73 (m, 0.1H), 7.51 -7.50 – (m, 0.1H)], [7.57 – 7.51 (m, 3.6H), 7.38 – 7.35 (m, 0.4H)], 7.25 – 7.21 (m, 1H), [7.10 (d, *J* = 8.4 Hz, 1.8H), 6.94 (d, *J* = 8.4 Hz, 0.2H)], 7.05 (t, *J* = 7.5 Hz, 1H), [7.19 – 7.17 (m, 0.1H), 6.85 (d, *J* = 7.4 Hz, 0.9H)], [6.60 (d, *J* = 8.2 Hz, 1.8H), 6.34 (d, *J* = 8.2 Hz, 0.2H)], 6.58 (s, 1H), [4.47 (s, 0.9H), 4.36 (s, 0.1H)], 2.11 – 2.02 (m, 1H), 1.71 – 1.64 (m, 1H), 1.50 – 1.39 (m,

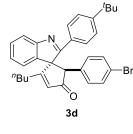
2H), 1.19 – 1.13 (m, 2H), [0.79 – 0.77 (m, 0.3H), 0.74 (t, *J* = 7.3 Hz, 2.7H); ¹³C NMR (125 MHz, CDCl₃) δ 204.2, 181.1, 176.4, 154.7, 137.9, 132.7, 132.3, 131.8, 131.0, 130.4, 129.4, 129.4, 129.2, 127.4, 125.8, 123.0, 121.2, 121.1, 73.5, 59.9, 29.5, 28.7, 22.0, 13.6; HRMS (ESI) calculated for [C₂₈H₂₄BrNNaO] [M+Na]⁺: 492.0933, found: 492.0936.


(1R,5R)-5-(4-bromophenyl)-2-butyl-2'-(p-tolyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (3b)

Me ⁿBu 3b The general procedure was followed using **1a** (121.0 mg, 0.4 mmol, 2.0 equiv.) and **2b** (37.8 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.2 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by column chromatography (PE/EA = 60:1 to 30:1), **3b** (dr = 5:1, 83.9 mg,

95%) was obtained as yellow solid: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ [7.95 (d, *J* = 8.0 Hz, 1.8H), 7.72 (d, *J* = 8.0 Hz, 0.1H), 7.95 (m, 0.1H)], [7.50 (d, *J* = 7.7 Hz, 0.9H), 7.30 – 7.28 (m, 0.1H)], [7.34 (d, *J* = 7.9 Hz, 1.8H), 7.31 (d, *J* = 7.9 Hz, 0.2H)], 7.22 (t, *J* = 7.7 Hz, 1H), [7.09 (d, *J* = 8.3 Hz, 1.8H), 7.00 – 6.98 (m, 0.2H)], 7.02 (t, *J* = 7.4 Hz, 1H), [6.95 (d, *J* = 7.4 Hz, 0.1H), 6.83 (d, *J* = 7.4 Hz, 0.9H)], [6.60 (d, *J* = 8.1 Hz, 1.8H), 6.37 (d, *J* = 8.1 Hz, 0.2H)] 6.57 (s, 1H), [4.47 (s, 0.9H), 4.36 (s, 0.1H)], [2.45 (s, 2.7H), 1.69 (s, 0.3H)], 2.10 – 2.02 (m, 1H), 1.69 – 1.63 (m, 1H), 1.49 – 1.39 (m, 2H), 1.16 (q, *J* = 6.6, 5.9 Hz, 2H), [0.78 – 0.76 (m, 0.3H), 0.73 (d, *J* = 7.3 Hz, 2.7H)]; ¹³C NMR (125 MHz, CDCl₃) δ 204.3, 181.2, 176.3, 154.8, 142.4, 137.8, 132.7, 131.0, 130.4, 130.2, 129.6, 129.3, 129.2, 127.4, 125.6, 123.0, 121.1, 120.9, 73.4, 60.2, 29.5, 28.7, 22.0, 21.6, 13.6; m.p. = 119.7 – 129.1 °C; HRMS (ESI) calculated for [C₂₉H₂₆BrNNaO] [M+Na]⁺: 506.1090, found: 506.1090.

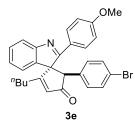
3. (1*R*,5*R*)-5-(4-bromophenyl)-2-butyl-2'-(4-ethylphenyl)spiro[cyclopentane-1,3'-indol]-2en-4-one (3c)


The general procedure was followed using **1a** (121.1 mg, 0.4 mmol, 2.0 equiv.) and **2c** (41.5 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.3 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by column chromatography (PE/EA = 50:1 to 20:1), **3c** (dr = 5.4:1, 52.3 mg, 56%) was obtained as

yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (600 MHz, CDCl₃) δ 8.02 – 7.92 (m, 2H), 7.50 (d, J = 5.3 Hz, 1H), 7.37 (d, J = 5.7 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), [7.12 – 7.08 (m, 1.8H), 6.94 – 6.91 (m, 0.2H)], 7.02 (d, J = 6.2 Hz, 1H), 6.83 (d, J = 7.1 Hz, 1H), [6.61 (d, J = 5.7 Hz, 1.8H), 6.36 – 6.34

(m, 0.2H)], 6.57 (s, 1H), [4.47 (s, 0.9H), 4.35 (s, 0.1H)], [2.76 – 2.74 (m, 1.8H), 2.64 – 2.60 (m, 0.2H)], 2.10 – 2.04 (m, 1H), 1.69 – 1.64 (m, 1H), 1.48 – 1.39 (m, 2H), 1.33 – 1.27 (m, 3H), 1.20 – 1.14 (m, 2H), 0.76 – 0.72 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.4, 176.4, 148.6, 137.8, 132.7, 131.0, 130.4, 129.8, 129.3, 129.1, 129.0, 127.5, 125.6, 123.0, 121.1, 120.9, 73.4, 60.1, 29.5, 28.9, 28.7, 22.0, 15.1, 13.6; HRMS (ESI) calculated for [C₃₀H₂₈BrNNaO] [M+Na]⁺: 520.1246, found: 520.1240.

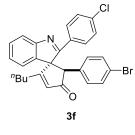
4. (1*R*,5*R*)-5-(4-bromophenyl)-2-butyl-2'-(4-(*tert*-butyl)phenyl)spiro[cyclopentane-1,3'indol]-2-en-4-one (3d)



The general procedure was followed using **1a** (122.0 mg, 0.4 mmol, 2.0 equiv.) and **2d** (50.0 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.2 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.4$, PE/EA = 10:1). After purification by column chromatography (PE/EA = 50:1 to 20:1), **3d** (dr = 3.3:1, 31.7 mg,

30%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel, following column chromatography separation, the second diastereomer is scarcely discernible in the NMR spectrum. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 7.51 (d, J = 7.8 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 8.4 Hz, 2H), 7.02 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 7.5 Hz, 1H), 6.61 (d, J = 8.0 Hz, 2H), 6.57 (s, 1H), 4.47 (s, 1H), 2.11 – 2.05 (m, 1H), 1.70 – 1.66 (m, 1H), 1.64 (d, J = 3.2 Hz, 1H), 1.51 – 1.44 (m, 2H), 1.38 (s, 9H), 1.19 – 1.15 (m, 2H), 0.75 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 204.4, 181.4, 177.7, 156.0, 138.0, 134.8, 132.8, 131.8, 131.7, 131.0, 130.4, 129.4, 129.2, 127.3, 126.5, 125.6, 123.0, 121.0, 73.1, 61.0, 34.4, 31.1, 29.7, 27.4, 22.1, 14.5; HRMS (ESI) calculated for [C₃₂H₃₂BrNNaO] [M+Na]⁺: 548.1559, found: 548.1547.

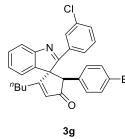
5. (1*R*,5*R*)-5-(4-bromophenyl)-2-butyl-2'-(4-methoxyphenyl)spiro[cyclopentane-1,3'-indol]-


2-en-4-one (3e)

The general procedure was followed using **1a** (119.9 mg, 0.4 mmol, 2.0 equiv.) and **2e** (45.1 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.2 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by column chromatography (PE/EA = 60:1 to 30:1), **3e** (dr = 7.0:1, 85.6 mg,

85%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ [7.75 (d, J = 7.6 Hz, 0.1H), 7.52 (d, J = 7.6 Hz, 1.8H), 7.50 – 7.48 (m, 0.1H)], [7.71 – 7.69 (m, 0.9H), 7.34 – 7.31 (m, 0.1H)], [7.43 (t, J = 7.9 Hz, 0.9H), 7.39 (t, J = 7.9 Hz, 0.1H)], [7.25 – 7.21 (m, 0.9H), 6.98 – 6.96 (m, 0.1H)], 7.15 – 7.07 (m, 3H), [7.07 – 7.03 (m, 0.9H), 6.90 – 6.87 (m, 0.1H)], [6.97 (d, J = 7.6 Hz, 0.1H), 6.85 (d, J = 7.6 Hz, 0.9H)], [6.79 (s, 0.1H), 6.57 (s, 0.9H)], [6.61 (d, J = 8.5 Hz, 1.8H), 6.34 (d, J = 8.5 Hz, 2H)], [4.50 (s, 0.9H), 4.34 (s, 0.1H)], [3.92 (s, 2.7H), 3.72 (s, 0.3H)], 2.13 – 2.01 (m, 1H), 1.70 – 1.63 (m, 1H), 1.53 – 1.37 (m, 2H), 1.21 – 1.13 (m, 2H), [0.78 (t, J = 7.3 Hz, 0.3H), 0.74 (t, J = 7.3 Hz, 2.7H)]; ¹³C NMR (125 MHz, CDCl₃) δ 204.2, 181.1, 176.3, 160.4, 154.6, 138.0, 133.6, [132.6, 131.5], [131.0, 130.7], [130.4, 129.8], [129.5, 129.4], [129.2, 129.1], [127.2, 125.9], [123.0, 121.6], [121.2, 121.1], [119.8, 119.6], [118.1, 117.6], [112.2, 111.9], 73.6, [60.0, 59.5], [55.5, 55.2], [29.5, 29.2], [28.9, 28.7], [22.2, 22.0], 13.6; HRMS (ESI) calculated for [C₂₉H₂₆BrNNaO₂] [M+Na]⁺: 522.1039, found: 522.1037.

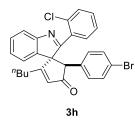
6. (1*R*,5*R*)-5-(4-bromophenyl)-2-butyl-2'-(4-chlorophenyl)spiro[cyclopentane-1,3'-indol]-2en-4-one (3f)



The general procedure was followed using **1a** (127.1 mg, 0.4 mmol, 2.0 equiv.) and **2f** (45.0 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.2 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.4$, PE/EA = 10:1). After purification by column chromatography (PE/EA = 50:1 to 20:1), **3f** (dr = 4.8:1, 39.8 mg,

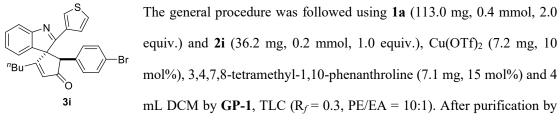
40%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ [8.06 – 8.03 (m, 1.8H), 7.72 – 7.69

(m, 0.2H)], [7.57 - 7.52 (m, 3.6H), 7.40 - 7.34 (m, 0.4H)], 7.25 - 7.21 (m, 1H), [7.10 (d, J = 8.5 Hz, 1.8H), 6.94 (d, J = 8.5 Hz, 0.2H)], 7.07 - 7.02 (m, 1H), [7.19 - 7.17 (m, 0.1H), 6.85 (d, J = 7.0 Hz, 0.9H)], [6.60 (d, J = 8.4 Hz, 1.8H), 6.34 (d, J = 8.4 Hz, 0.2H)], 6.58 (s, 1H), [4.47 (s, 0.9H), 4.36 (s, 0.1H)], 2.11 - 2.03 (m, 1H), 1.70 - 1.64 (m, 1H), 1.49 - 1.41 (m, 2H), 1.21 - 1.14 (m, 2H), [0.79 - 0.77 (m, 0.3H), 0.74 (t, J = 7.3 Hz, 2.7H)]; ¹³C NMR (125 MHz, CDCl₃) δ 204.3, 181.1, 176.4, 154.7, 137.9, 132.6, 132.3, 131.8, 131.0, 130.4, 129.5 129.4, 129.2, 127.4, 125.8, 123.0, 121.2, 121.1, 73.5, 59.9, 29.5, 28.7, 22.0, 13.6; MALDI-MS calculated for [C₂₈H₂₄BrClNO] [M+H]⁺: 504.0730, found: 503.9740.


(1R,5R)-5-(4-bromophenyl)-2-butyl-2'-(3-chlorophenyl)spiro[cyclopentane-1,3'-indol]-2en-4-one (3g)

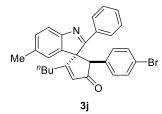
The general procedure was followed using **1a** (125.1 mg, 0.4 mmol, 2.0 equiv.) and **2g** (45.8 mg, 0.2 mmol, 1.0 equiv.), $Cu(OTf)_2$ (7.2 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by

^{3g} column chromatography (PE/EA = 50:1 to 20:1), **3g** (dr = 4.8:1, 70.2 mg, 68%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (**500 MHz, CDCl₃**) δ [8.17 (s, 0.9H), 8.06 – 8.04 (m, 0.1H)], [7.82 (d, *J* = 7.8 Hz, 0.9H), 7.77 – 7.74 (m, 0.1H)], 7.54 (t, *J* = 6.6 Hz, 2H), 7.47 (t, *J* = 7.9 Hz, 1H), 7.24 (d, *J* = 8.9 Hz, 1H), [7.11 (d, *J* = 8.4 Hz, 1.8H), 7.01 (d, *J* = 8.4 Hz, 0.2H)], 7.07 (t, *J* = 7.5 Hz, 1H), [7.41 – 7.31 (m, 0.1H), 6.85 (d, *J* = 7.5 Hz, 0.9H)], [6.60 (d, *J* = 4.0 Hz, 1.8H), 6.37 – 6.35 (m, 0.2H)], [6.63 (s, 0.1H), 6.59 (s, 0.9H)], [4.43 (s, 0.9H), 4.36 (s, 0.1H)], 2.07 – 1.99 (m, 1H), 1.70 – 1.63 (m, 1H), 1.50 – 1.39 (m, 2H), 1.20 – 1.15 (m, 2H), [0.80 – 0.78 (m, 0.3H), 0.75 (t, *J* = 7.4 Hz, 2.7H)]; ¹³C NMR (125 MHz, CDCl₃) δ 203.9, 180.6, 175.0, 154.4, 138.0, 135.8, 134.0, 132.5, 131.8, 131.1, 130.7, 130.4, 129.8, 129.4, 127.6, 126.3, 125.1, 123.1, 121.5, 121.3, 73.5, 59.6, 29.7, 28.7, 22.0, 13.6; HRMS (ESI) calculated for [C₂₈H₂₃BrCINNaO] [M+Na]⁺: 526.0544, found: 526.0557.


 (1R,5R)-5-(4-bromophenyl)-2-butyl-2'-(2-chlorophenyl)spiro[cyclopentane-1,3'-indol]-2en-4-one (3h)

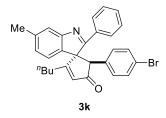
The general procedure was followed using **1a** (118.5 mg, 0.4 mmol, 2.0 equiv.) and **2h** (43.9 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.3 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by column chromatography (PE/EA = 60:1 to 30:1), **3h** (dr = 5.4:1, 93 mg,

96%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ [8.06 – 8.04 (m, 1.8H), 7.76 – 7.73 (m, 0.1H), 7.51 – 7.48 (m, 0.1H)], [7.57 – 7.51 (m, 3.6H), 7.39 – 7.33 (m, 0.4H)], [7.32 – 7.30 (m, 0.1H), 7.25 – 7.21 (m, 0.9H)], [7.10 (d, *J* = 8.5 Hz, 1.8H), 6.94 (d, *J* = 8.5 Hz, 0.2H)], 7.04 (t, *J* = 7.5 Hz, 1H), [7.18 (d, *J* = 7.1 Hz, 0.1H), 6.85 (d, *J* = 7.1 Hz, 0.9H)], 6.61 (s, 1H), [6.59 (d, *J* = 7.9 Hz, 1.8H), 6.34 (d, *J* = 7.9 Hz, 0.2H)], [4.47 (s, 0.9H), 4.37 (s, 0.1H)], 2.11 – 2.03 (m, 1H), 1.71 – 1.64 (m, 1H), 1.52 – 1.39 (m, 2H), 1.21 – 1.12 (m, 2H), [0.79 – 0.77 (m, 0.3H), 0.74 (t, *J* = 7.3 Hz, 2.7H)]; ¹³C NMR (125 MHz, CDCl₃) δ 204.2, 181.1, 176.4, 154.7, 137.9, 132.6, 132.3, 131.8, 131.0, 130.4, 129.4, 129.4, 129.2, 127.4, 125.8, 123.0, 121.2, 121.1, 73.5, 59.9, 29.5, 28.7, 22.0, 13.6; MALDI-MS calculated for [C₂₈H₂₄BrClNO] [M+H]⁺: 504.0730, found: 504.0050.


9. (1*R*,5*R*)-5-(4-bromophenyl)-2-butyl-2'-(thiophen-3-yl)spiro[cyclopentane-1,3'-indol]-2en-4-one (3i)

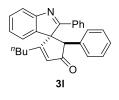
column chromatography (PE/EA = 60:1 to 30:1), **3i** (dr = 4.7:1, 70.4 mg, 81%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ [7.91 – 7.90 (m, 0.9H),7.72 – 7.68 (m, 0.1H)], [7.84 – 7.81 (m, 0.9H), 7.48 – 7.46 (m, 0.1H)], [7.52 – 7.48 (m, 1.8H), 7.40 – 7.32 (m, 0.2H)], 7.24 – 7.19 (m, 1H), [7.18 – 7.15 (m, 0.2H), 7.11 (d, *J* = 8.5 Hz, 1.8H)], 7.02 – 6.98 (m, 1H), [7.04 – 7.02 (m, 0.1H), 6.79 (d, *J* = 7.5 Hz, 0.9H)], [6.63 (d, *J* = 8.5 Hz, 1.8H), 6.37 (d, *J* = 8.5 Hz, 0.2H)], 6.58 (s, 1H), [4.49 (s, 0.9H), 4.36 (s, 0.1H)], 2.04 – 1.95 (m, 1H), 1.68 – 1.62 (m, 1H), 1.48 – 1.37 (m, 2H), 1.19 – 1.12 (m, 2H), [0.79 – 0.76 (m, 0.3H), 0.74 (t, *J* = 7.4 Hz, 2.7H)]; ¹³C NMR (125 MHz, CDCl₃) δ

204.4, [181.0, 179.4], 172.6, 155.1, 137.4, 134.9, 132.9, [131.0, 130.8], 130.3, [130.0, 129.6], 129.2, 127.3, 127.0, 126.9, [125.8, 125.6], 123.1, 121.1, 121.0, 73.6, 60.1, 29.5, 28.7, 22.0, 13.6; **HRMS** (ESI) calculated for [C₂₆H₂₂BrNNaOS] [M+Na]⁺: 498.0498, found: 498.0497.


(1R,5R)-5-(4-bromophenyl)-2-butyl-5'-methyl-2'-phenylspiro[cyclopentane-1,3'-indol]-2en-4-one (3j)

The general procedure was followed using **1a** (122.0 mg, 0.4 mmol, 2.0 equiv.) and **2j** (40.7 mg, 0.2 mmol, 1.0 equiv.), $Cu(OTf)_2$ (7.2 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC (Rf = 0.3, PE/EA = 10:1). After

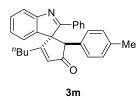
purification by column chromatography (PE/EA = 50:1 to 20:1), **3j** (dr = 3.0:1, 55.6 mg, 58%) was obtained as yellow oil : Two diastereoisomers are hard to be separated by column chromatography on silica gel, following column chromatography separation, the second diastereomer is scarcely discernible in the NMR spectrum. ¹H NMR (600 MHz, CDCl₃) δ [8.03 (d, *J* = 5.4 Hz, 1.8H), 7.61 – 7.63 (m, 0,2H), 7.29 – 7.31 (m, 0.2H)], [7.51 – 7.55 (m, 2.4H), 7.15 – 7.19 (m, 0.6H)], [7.39 (d, *J* = 7.8 Hz, 0.8H), 7.34 (d, *J* = 7.7 Hz, 0.2H)], 7.10 (d, *J* = 8.3 Hz, 2H), [7.28 – 7.30 (m, 0.2H), 7.02 (d, *J* = 7.8 Hz, 0,8H)], [6.93 (d, *J* = 8.3 Hz, 0,4H), 6.63 (s, 0.8H), 6.57 (s, 1H)], 6.60 (d, *J* = 8.1 Hz, 2H), [4.46 (s, 0.8H), 4.34 (s, 0.2H)], [2.47 (s, 0.6H), 2.25 (s, 2.4H)], 2.10 – 2.04 (m, 1H), 1.76 – 1.64 (m, 1H), 1.53 – 1.42 (m, 2H), [175.9, 175.3], [152.6, 142.0], [138.0, 137.2], [135.8, 134.7], [132.9, 132.7], 132.4, [131.5, 131.2], [130.9, 130.7], [130.4, 130.1], [129.8, 129.7], [129.4, 129.2], 128.1, [127.4, 127.3], [123.6, 121.8], [121.1, 121.1], [120.9, 120.7], [73.7, 73.3], [60.3, 59.9], [29.5, 29.2], [28.8, 28.6], [22.1, 22.0], [21.6, 21.4], [14.2, 13.5]; HRMS (ESI) calculated for [C₂₉H₂₆BrNNaO] [M+Na]⁺: 506.1090, found: 506.1093.


11. (1*R*,5*R*)-5-(4-bromophenyl)-2-butyl-6'-methyl-2'-phenylspiro[cyclopentane-1,3'-indol]-2en-4-one (3k)

The general procedure was followed using **1a** (118.4 mg, 0.4 mmol, 2.0 equiv.) and **2k** (37.0 mg, 0.2 mmol, 1.0 equiv.), $Cu(OTf)_2$ (7.2 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.0 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After

purification by column chromatography (PE/EA = 60:1 to 30:1), **3k** (dr = 5.0:1, 72.1 mg, 83%) was obtained as yellow solid: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹**H NMR (500 MHz, CDCl₃)** δ [8.04 – 8.00 (m, 1.84H), 7.49 – 7.46 (m, 0.16H)], 7.54 (q, *J* = 7.1, 6.3 Hz, 3H), 7.33 (s, 1H), [7.11 (d, *J* = 8.4 Hz, 1.84H), 6.93 (d, *J* = 8.4 Hz, 0.16H)], 6.85 (d, *J* = 7.0 Hz, 1H), 6.72 (d, *J* = 7.6 Hz, 1H), [6.60 (d, *J* = 8.4 Hz, 1.84H), 6.35 (d, *J* = 8.4 Hz, 0.16H)], 6.55 (s, 1H), [4.45 (s, 0.92H), 4.34 (s, 0.08H)], [2.50 (s, 0.24H), 2.32 (s, 2.76H)], 2.08 – 2.01 (m, 1H), 1.70 – 1.63 (m, 1H), 1.51 – 1.39 (m, 2H), 1.13 – 1.20 (m, 2H), [0.80 – 0.77 (m, 0.24H), 0.75 (t, *J* = 7.4 Hz, 2.76H)]; ¹³**C NMR (125 MHz, CDCl₃)** δ 204.4, 181.4, 176.5, 155.0, 139.2, 134.8, 132.8, 132.5, 131.6, 131.0, 130.4, 129.4, 129.1, 127.4, 126.7, 122.7, 121.9, 121.1, 73.2, 59.8, 29.4, 28.7, 22.0, 21.5, 13.6; m.p. = 119.5 – 129.9 °C; **HRMS** (ESI) calculated for [C₂₉H₂₆BrNNaO] [M+Na]⁺: 506.1090, found: 506.1082.

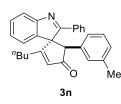
12. (1R,5R)-2-butyl-2',5-diphenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (31)



The general procedure was followed using **11** (90.5 mg, 0.4 mmol, 2.0 equiv.) and **2a** (37.5 mg, 0.2 mmol, 1.0 equiv.), $Cu(OTf)_2$ (7.3 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**,

TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by column chromatography

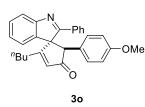
(PE/EA = 30:1), **3l** (dr = 6.0:1, 63 mg, 83%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel, following column chromatography separation, the second diastereomer is scarcely discernible in the NMR spectrum. ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 8.03 (m, 2H), 7.58 – 7.51 (m, 4H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.07 (q, *J* = 7.7 Hz, 2H), 6.94 (s, 1H), 6.87 – 6.80 (m, 2H), 6.60 (d, *J* = 11.9 Hz, 2H), 4.47 (s, 1H), 2.11 – 2.03 (m, 1H), 1.72 – 1.65 (m, 1H), 1.50 – 1.39 (m, 2H), 1.20 – 1.13 (m, 2H), 0.74 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 204.0, 181.2, 176.3, 154.7, 137.8, 135.9, 132.3, 131.8, 131.6, 130.2, 129.5, 129.5, 129.4, 129.2, 127.4, 127.3, 125.7, 123.1, 121.9, 121.1, 73.6, 59.7, 29.5, 28.7, 22.0, 13.6; MALDI-MS calculated for [C₂₈H₂₆NO] [M+H]⁺: 414.1834, found:414.1710.


13. (1*R*,5*R*)-2-butyl-2'-phenyl-5-(*p*-tolyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (3m)

The general procedure was followed using **1m** (99.0 mg, 0.4 mmol, 2.0 equiv.) and **2a** (37.5 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.2 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by

column chromatography (PE/EA = 50:1 to 20:1), **3m** (dr = 10:1, 62.4 mg, 79%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel, nevertheless, following column chromatography separation, the second diastereomer is scarcely discernible in the NMR spectrum. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 6.2 Hz, 2H), 7.56 – 7.49 (m, 4H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.89 (d, *J* = 7.5 Hz, 1H), 6.77 (d, *J* = 7.7 Hz, 2H), 6.60 (d, *J* = 7.7 Hz, 2H), 6.58 (s, 1H), 4.50 (s, 1H), 2.09 (s, 3H), 2.07 – 2.02 (m, 1H), 1.70 – 1.63 (m, 1H), 1.50 – 1.41 (m, 2H), 1.19 – 1.14 (m, 2H), 0.74 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 205.2, 180.9, 176.7, 154.8, 138.3, 136.5, 132.6, 131.6, 130.5, 129.6, 129.3, 128.8, 128.6, 128.6, 127.5, 125.6, 123.3, 120.9, 73.9, 60.4, 29.5, 28.7, 22.0, 20.9, 13.6; HRMS (ESI) calculated for [C₂₉H₂₇NNaO] [M+Na]⁺: 428.1985, found: 428.1995.

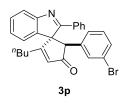
14. (1R,5R)-2-butyl-2'-phenyl-5-(m-tolyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (3n)



The general procedure was followed using 1n (96.2 mg, 0.4 mmol, 2.0 equiv.) and 2a (38.9 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.3 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM

by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by column

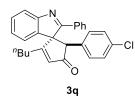
chromatography (PE/EA = 50:1 to 20:1), **3n** (dr = 3.6:1, 67.0 mg, 83%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (**500 MHz, CDCl**₃) δ [8.06 (d, J = 7.2 Hz, 1.8H), 7.75 – 7.72 (m, 0.1H), 7.40 – 7.37 (m, 0.1H)], [7.57 – 7.48 (m, 3.6H), 7.36 – 7.30 (m, 0.4H)], 7.18 (q, J = 7.4 Hz, 1H), [7.15 – 7.11(m, 0.1H), 7.01 (t, J = 7.5 Hz, 0.9H)], 6.92 – 6.78 (m, 2H), [6.75 (d, J = 7.7 Hz, 0.9H), 6.72 – 6.69 (m, 0.1H)], [6.62 (s, 0.1H), 6.59 (s, 0.9H)], [6.55 (s, 1H), 6.29 (s, 0.1H)], [6.50 (d, J = 7.7 Hz, 0.9H), 6.22 (d, J = 7.7 Hz, 0.1H)], [4.49 (s, 0.9H), 4.39 (s, 0.1H)], [2.08 (s, 2.7H), 1.91 (s, 0.3H)], 2.03 (d, J = 9.4 Hz, 1H), 1.71 -1.64 (m, 1H), 1.52 – 1.39 (m, 2H), 1.17 (q, J = 7.9 Hz, 2H), [0.80 – 0.77 (m, 0.3H), 0.74 (t, J= 7.4 Hz, 2.7H)]; ¹³C NMR (125 MHz, CDCl₃) δ 205.2, 181.0, 176.7, 154.8, 138.2, 137.3, 133.6, 132.6, 131.6, 129.7, 129.4, 129.4, 128.8, 127.7, 127.7, 127.5, 125.7, 125.4, 123.4, 120.8, 73.9, 60.4, 29.5, 28.7, 22.0, 21.2, 13.6; **HRMS** (ESI) calculated for [C₂₉H₂₇NNaO] [M+Na]⁺: 428.1985, found: 428.1996.


15. (1*R*,5*R*)-2-butyl-5-(4-methoxyphenyl)-2'-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (30)

The general procedure was followed using **10** (107.8 mg, 0.4 mmol, 2.0 equiv.) and **2a** (36.0 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.3 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.0 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification

by column chromatography (PE/EA = 60:1 to 30:1), **30** (dr = 6.0:1, 57.2 mg, 73%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (600 MHz, CDCl₃) δ [8.07 – 8.04 (m, 1.8H), 7.75 – 7.72 (m, 0.1H), 7.50 – 7.47 (m, 0.1H)], [7.56 – 7.50 (m, 3.6H), 7.40 – 7.35 (m, 0.4H)], [7.33 – 7.30 (m, 0.1H), 7.22 – 7.19 (m, 0.9H), 7.05 – 7.02 (m, 1H), [7.19 – 7.15 (m, 0.1H), 6.88 (d, *J* = 7.3, 0.9H)], [6.64 (d, *J* = 8.7 Hz, 1.8H), 6.39 (d, *J* = 8.7 Hz, 0.2H)], [6.61 (s, 0.1H), 6.58 (s, 0.9H)], [6.51 (d, *J* = 8.7 Hz, 1.8H), 6.36 (d, *J* = 8.7 Hz, 0.2H)], [4.50 (s, 0.9H), 4.40 (s, 0.1H)], 3.60 (s, 3H), 2.10 – 2.03 (m, 1H), 1.70 – 1.65 (m, 1H), 1.50 – 1.40 (m, 2H), 1.20 – 1.14 (m, 2H), [0.79 – 0.77 (m, 0.3H), 0.74 (t, *J* = 7.3 Hz, 2.7H); ¹³C NMR (150 MHz, CDCl₃) δ 205.2, 180.8, 176.7, 158.3, 154.8, 138.3, 132.5, 131.6, 129.8, 129.5, 129.4, 128.9, 127.4, 125.7, 125.6, 123.2, 120.9, 113.3, 74.0, 60.2, 55.0, 29.6, 28.7, 22.0, 13.6; HRMS (ESI) calculated for [C₂₉H₂₇NNaO₂] [M+Na]⁺: 444.1934, found: 444.1945.

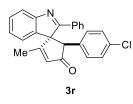
16. (1*R*,5*R*)-5-(3-bromophenyl)-2-butyl-2'-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (3p)


The general procedure was followed using **1p** (122.1 mg, 0.4 mmol, 2.0 equiv.) and **2a** (37.1 mg, 0.2 mmol, 1.0 equiv.), $Cu(OTf)_2$ (7.3 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM

by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by column

chromatography (PE/EA = 50:1 to 20:1), **3p** (dr = 6.3:1, 67.6 mg, 75%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (600 MHz, CDCl₃) δ [8.08 – 8.03 (m, 1.8H), 7.75 (d, *J* = 7.7Hz, 0.1H), 7.50 (d, *J* = 7.7Hz, 0.1H)], [7.59 – 7.52 (m, 3.6H), 7.36 – 7.30 (m, 0.4H)], [7.40 – 7.36 (m, 0.1H), 7.24 – 7.21 (m, 0.9H)], [7.21 -7.18 (m, 0.2H), 7.09 -7.07 (m, 0.8H)], 7.07 -7.02 (m, 1H), [6.94 (t, *J* = 1.9 Hz, 0.9H), 6.66 (t, *J* = 1.9 Hz, 0.1H)], 6.85 (d, *J* = 7.1 Hz, 1H), [6.83 (t, *J* = 7.9 Hz, 0.9H), 6.71 (t, *J* = 7.9 Hz, 0.1H)], [6.60 (d, *J* = 7.9 Hz, 0.9H), 6.35 (d, *J* = 7.9 Hz, 0.1H)], [6.63 (t, *J* = 1.6 Hz, 0.1H), 6.59 (t, *J* = 1.6 Hz, 0.9H)], [4.47 (s, 0.9H), 4.37 (s, 0.1H)], 2.10 -2.04 (m, 1H), 1.71 -1.65 (m, 1H), 1.52 -1.40 (m, 2H), 1.22 -1.14 (m, 2H), [0.78 (t, *J* = 7.3 Hz, 0.3H), 0.74 (t, *J* = 7.3 Hz, 2.7H)]; ¹³C NMR (125 MHz, CDCl₃) δ 204.1, 181.2, 176.3, 154.7, 137.8, 135.9, 132.3, 131.8, 131.6, 130.2, 129.5, 129.5, 129.4, 129.2, 127.4, 127.3, 125.7, 123.1, 121.8, 121.1, 73.6, 59.7, 29.5, 28.7, 22.0, 13.6; HRMS (ESI) calculated for [C₂₈H₂₄BrNNaO] [M+Na]⁺: 492.0933, found: 492.0930.

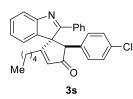
17. (1R,5R)-2-butyl-5-(4-chlorophenyl)-2'-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one



The general procedure was followed using **1q** (103.4 mg, 0.4 mmol, 2.0 equiv.) and **2a** (37.1 mg, 0.2 mmol, 1.0 equiv.), $Cu(OTf)_2$ (7.3 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by

column chromatography (PE/EA = 60:1 to 30:1), **3q** (dr = 8.4:1, 81.5 mg, 82%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (600 MHz, CDCl₃) δ [8.07 – 8.04 (m, 1.8H), 7.76 – 7.74 (m, 0.1H), 7.50 – 7.49 (m, 0.1H)], [7.58 – 7.51 (m, 3.6H), 7.40 – 7.35 (m, 0.4H)], 7.25 – 7.21 (m, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), [6.95 (d, *J* = 8.5 Hz, 1.8H), 6.79 (d, *J* = 8.5 Hz, 0.2H)], 6.85 (d, *J* = 7.5 Hz, 1H), [6.66 (d, *J* = 8.5 Hz, 1.8H), 6.40 (d, *J* = 8.5 Hz, 0.2H)], [6.62 (s, 0.1H), 6.58 (s, 0.9H)], [4.49 (s, 0.9H), 4.38 (s, 0.1H)], 2.10 – 2.04 (m, 1H), 1.71 – 1.65 (m, 1H), 1.50 – 1.39 (m, 2H), 1.19 – 1.14 (m, 2H), [0.79 – 0.77 (m, 0.3H), 0.74 (t, *J* = 7.3 Hz, 2.7H)]; ¹³C NMR (125 MHz, CDCl₃) δ 204.3, 181.1, 176.4, 154.7, 137.9, 132.9, 132.3, 132.1, 131.8, 130.0, 129.4, 129.4, 129.2, 128.1, 127.4, 125.8, 123.0, 121.1, 73.6, 59.8, 29.5, 28.7, 22.0, 13.6; HRMS (ESI) calculated for [C₂₈H₂₄ClNNaO] [M+Na]⁺: 448.1439, found: 448.1437.

18. (1*R*,5*R*)-5-(4-chlorophenyl)-2-methyl-2'-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one
(3r)

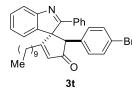


The general procedure was followed using **1r** (94.8 mg, 0.4 mmol, 2.0 equiv.) and **2a** (38.1 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.3 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by

column chromatography (PE/EA = 50:1 to 20:1), **3r** (dr = 4.0:1, 63.4 mg, 84%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹**H NMR (600 MHz, CDCl₃)** δ [8.06 (d, *J* = 6.5 Hz, 1.8H), 7.76 – 7.74 (m, 0.1H), 7.51 – 7.49 (m, 0.1H)], [7.58 – 7.52 (m, 3.6H), 7.38 – 7.29 (m, 0.4H)], 7.23 (t, *J* = 7.6 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), [6.95 (d, *J* = 8.5 Hz, 1.8H), 6.79 (d, *J* = 8.5 Hz, 0.2H)], [7.19 – 7.17 (m, 0.1H), 6.86 (d, *J* = 7.4 Hz, 0.9H)], [6.67 (d, *J* = 8.4 Hz, 1.8H), 6.41 (d, *J* = 8.4 Hz, 0.2H)], [6.60 (s, 0.1H), 6.56 (s, 0.9H)], [4.49 (s, 0.9H), 4.39 (s, 0.1H)], [1.75 (s, 2.7H), 1.68 (s, 0.3H)]; ¹³C NMR (125 MHz, CDCl₃) δ 204.4, 176.5, 176.3, 154.8, 137.5, 132.9, 132.3, 132.2, 131.8, 131.4, 123.0, 129.5, 129.2, 128.1, 127.4, 125.9, 123.0, 121.1, 73.6, 60.0, [29.7, 15.9]; HRMS (ESI) calculated for [C₂₅H₁₈CINNaO] [M+Na]⁺: 406.0969, found: 406.0966.

19. (1S,5R)-5-(4-chlorophenyl)-2-ethyl-2,2,2-trimethyl-2'-phenyl-2 λ^7 -spiro[cyclopentane-

1,3'-indol]-2-en-4-one (3s)

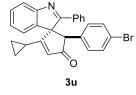

The general procedure was followed using **1s** (116.3 mg, 0.4 mmol, 2.0 equiv.) and **2a** (39.0 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.2 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.4$, PE/EA = 10:1). After purification by

column chromatography (PE/EA = 50:1 to 20:1), **3s** (dr = 7.2:1, 59.0 mg, 62%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (600 MHz, CDCl₃) δ [8.07 – 8.04(m, 1.8H), 7.75 (d, *J* = 7.7 Hz, 0.1H), 7.50 (d, *J* = 7.6 Hz, 0.1H)] [7.56 – 7.50 (m, 3.6H), 7.40 – 7.36 (m, 0.4H)], [7.34 – 7.30 (m, 0.1H), 7.25 – 7.21 (m, 0.9H),] 7.04 (t, *J* = 6.9 Hz, 1H), [6.95 (d, *J* = 8.1 Hz, 1.8H), 6.79 (d, *J* = 8.2 Hz, 0.2H)], [7.18 (d, *J* = 7.6 Hz, 0.1H), 6.85 (d, *J* = 7.5 Hz, 0.9H)], [6.66 (d, *J* = 8.1 Hz, 1.8H), 6.40 (d, *J* = 8.2 Hz, 0.2H)], [6.62 (s, 0.1H), 6.59 (s, 0.9H)], [4.49 (s, 0.9H),4.39 (s, 0.1H)], 2.10 – 2.03 (m, 1H), 1.70 – 1.64 (m, 1H), 1.51 – 1.42 (m, 2H), 1.14 – 1.12 (s, 4H), 0.76 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.4, 181.1, 176.4, 154.6, 137.9, 132.9, 132.2, 132.1, 131.8, 130.0, 129.4, 129.1, 128.0, 127.4, 125.8,

123.0, 121.1, 73.6, 59.8, 30.9, 29.7, 26.2, 22.1, 13.7; **HRMS** (ESI) calculated for [C₂₉H₂₆ClNNaO] [M+Na]⁺: 462.1595, found: 462.1593.

20. (1*S*,5*R*)-5-(4-bromophenyl)-2-ethyl-2,2,2,2,2,2,2,2,2-octamethyl-2'-phenyl- $2\lambda^{12}$ -

spiro[cyclopentane-1,3'-indol]-2-en-4-one (3t)

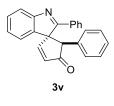


The general procedure was followed using **1t** (138.5 mg, 0.4 mmol, 2.0 equiv.) and **2a** (40.5 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.3 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.4$, PE/EA = 10:1). After purification by

column chromatography (PE/EA = 50:1 to 20:1), **3t** (dr = 12:1, 92.8 mg, 82%) was obtained as yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCI₃) δ [8.05 (d, J = 6.2 Hz, 1.8H), 7.76 – 7.73 (m, 0.1H), 7.51 –7.48 (m, 0.1H)], [7.57 – 7.51 (m, 3.6H), 7.40 – 7.35 (m, 0.4H)], [7.23 (t, J = 7.1 Hz, 0.9H), 7.40 – 7.30 (m, 0.1H)], [7.10 (d, J = 8.4 Hz, 1.8H), 6.94 (d J = 8.4 Hz, 0.2H)], 7.04 (t, J = 7.4 Hz, 1H), [7.18 (d, J = 7.5 Hz, 0.1H), 6.85 (d, J = 7.5 Hz, 0.9H)], [6.61 (d, J = 8.4 Hz, 1.8H), 6.34 (d, J = 8.4 Hz, 0.2H)], 6.58 (s, 1H), [4.47 (s, 0.9H), 4.37 (s, 0.1H)], 2.10 – 2.03 (m, 1H), 1.70 – 1.64 (m, 1H), 1.50 – 1.40 (m, 2H), 1.27 – 1.23 (m, 2H), 1.21 – 1.18 (m, 4H), 1.16 – 1.09 (m, 8H), 0.86 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCI₃) δ 204.2, 181.1, 176.4, 154.7, 137.9, 132.7, 132.3, 131.7, 131.0, 130.4, 129.4, 129.2, 127.4, 125.8, 123.0, 121.2, 121.1, 73.5, 59.9, 31.8, 29.8, 29.4, 29.3, 29.2, 29.0, 28.8, 26.6, 22.6, 14.0; HRMS (ESI) calculated for [C₃₄H₃₆BrNNaO] [M+Na]⁺: 576.1872, found: 576.1866.

21. (1*R*,5*R*)-5-(4-bromophenyl)-2-cyclopropyl-2'-phenylspiro[cyclopentane-1,3'-indol]-2-en-

4-one (3u)

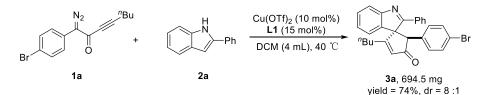


The general procedure was followed using **1u** (117.7 mg, 0.4 mmol, 2.0 equiv.) and **2a** (39.7 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.3 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.3$, PE/EA = 10:1). After purification by

column chromatography (PE/EA = 50:1 to 20:1), $3\mathbf{u}$ (dr = 1.7:1, 73.6 mg, 79%) was obtained as yellow soild: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (600 MHz, CDCl₃) δ [8.10 (d, J = 7.6 Hz, 1.70H), 7.76 – 7.74 (m, 0.15H), 7.51 –

7.49 (m, 0.15H)], [7.59 - 7.52 (m, 3.55H), 7.40 - 7.36 (m, 0.45H)], [7.34 - 1.31 (m,0.15H), 7.24 (t, J = 7.6 Hz, 0.85H)], [7.2 - 7.16 (m, 0.15H), 6.88 (d, J = 7.5 Hz, 0.85H)], [7.10 (d, J = 8.1 Hz, 1.70H), 6.94 (d, J = 8.1 Hz, 0.30H)], 7.06 (t, J = 7.5 Hz, 1H), [6.60 (d, J = 8.1 Hz, 1.70H), 6.34 (d, J = 8.1 Hz, 0.30H)], 6.17 (d, J = 6.7 Hz, 1H), [4.45 (s, 0.85H), 4.36 (s, 0.15H)], 1.04 - 1.00 (m, 1H), 0.91 - 0.81 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ [204.4, 203.7], [185.5, 184.2], [177.1, 176.7], [154.8, 141.9], [137.9, 134.8], [133.0, 132.8], 132.4, 131.7, [131.0, 130.7], [130.5, 130.4], [129.8, 129.4], [129.3, 129.2], 128.1, [127.7, 127.1], [125.9, 124.5], [123.4, 121.6], [122.9, 121.4], [121.1, 121.0], [74.0, 73.6], [59.6, 59.5], [14.2, 13.9], [13.6, 13.5], [11.7, 11.6]; m.p. = 136.7 - 147.8 °C; HRMS (ESI) calculated for [C₂₇H₂₀BrNNaO] [M+Na]⁺: 476.0620, found: 476.0617.

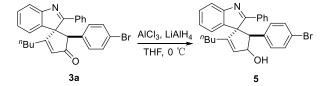
22. (1*S*,5*R*)-2',5-diphenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (3v)



The general procedure was followed using **1v** (68.2 mg, 0.4 mmol, 2.0 equiv.) and **2a** (38.2 mg, 0.2 mmol, 1.0 equiv.), Cu(OTf)₂ (7.3 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (7.1 mg, 15 mol%) and 4 mL DCM by **GP-1**, TLC ($R_f = 0.4$, PE/EA = 10:1). After purification by column chromatography

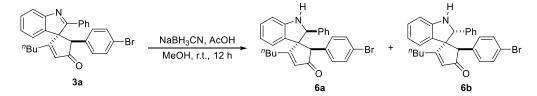
(PE/EA = 50:1 to 20:1), **3v** (dr = 2.3:1, 23.1 mg, 35%) was obtained as pale yellow oil: Two diastereoisomers are hard to be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl3) δ [8.12 – 8.09 (m, 1.50H), 7.75 – 7.73 (m, 0.25H), 7.58 – 7.56 (m, 0.25H)], [7.64 (d, J = 5.6 Hz, 0.75H), 7.29 – 7.27 (m, 0.25H)], [7.55 – 7.49 (m, 3.00H), 7.39 – 7.33 (m, 1.00H)], [7.21 – 7.12 (m, 1.25H), 7.05 – 6.91 (m, 3.75H)], 6.87 – 6.84 (m, 1.00H), [6.83 – 6.82 (m, 0.25H), 6.81 (d, J = 5.4 Hz, 0.75H)], [6.73 (d, J = 5.9 Hz, 1.50H), 6.49 – 6.47 (m, 0.50H)], [4.47 (s, 0.75H), 4.39 (s, 0.25H)]; ¹³C NMR (125 MHz, CDCl₃) δ 205.6, 176.8, [162.4, 161.8], 154.6, [136.9, 135.8], 134.2, 133.6, 132.8, [131.6, 130.3], [129.5, 129.3], 129.0, [128.7, 128.1], [128.0, 127.9], [127.8, 127.6], [127.2, 127.1], [126.9, 125.6], [124.2, 121.6], [121.5, 121.0], [71.4, 71.0], 59.3; HRMS (ESI) calculated for [C₂₄H₁₇NNaO] [M+Na]⁺: 358.1202, found: 358.1205.

6. Gram scale preparation of 3a and synthetic application


6.1 Gram scale preparation of spirocyclic 3a

In a dried glass tube, a mixture of Cu(OTf)₂ (72.8 mg, 10 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (70.2 mg, 15 mol%) in DCM (20 mL) was stirred at room temperature for 15 mins. Subsequently, indole **2a** (2.0 mmol, 1.0 equiv.) was added to the reaction mixture at room temperature, and diazo compounds **1a** (4.0 mmol, 2.0 equiv.) was dissolved in 20 mL DCM and added to the reaction mixture. Then the resulting mixture was continually stirred at 40 °C for 2 h and **2a** was consumed completely determined by TLC analysis. The dr of the product was calculated by crude ¹H NMR. The mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EA = 60:1 to 30:1) to afford the desired product **3a**.

6.2 Synthetic application


1) 5-(4-bromophenyl)-2-butyl-2'-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-ol (5)

In a dried reaction tube, **3a** (70.4 mg, 0.15 mmol, 1.0 equiv.) and AlCl₃ (30 mg, 0.22 mmol, 1.5 equiv.) were dissolved with THF (2.0 mL), then LiAlH₄ (0.3 mL, 0.3 mmol, 2.0 equiv.) was slowly dropped at 0 °C and stirred for 15 mins. After the reaction was complete (monitored by TLC), the crude reaction mixture was filtered with Celite and washed with EA. The solvent was removed under reduced pressure. Then the residue was purified by silica gel column chromatography (PE/EA = 30:1 to 10:1) to afford the desired product **5** (dr = 5.7:1, 27.1 mg, 38%; 29.5 mg, 42%) as a yellow oil. ¹H NMR

(500 MHz, CDCl₃) δ [8.00 – 7.93 (m, 1.70H), 7.44 – 7.40 (m, 0.30H)], [7.73 – 7.70 (m, 0.85H), 7.66 - 7.64 (m, 0.15H), 7.53 (d, J = 7.7 Hz, 1H), [7.51 - 7.45 (m, 2.55H), 7.39 - 7.35 (m, 0.45H)], 7.34 - 7.30 (m, 1H), [7.25 - 7.21 (m, 0.85H), 6.97 - 6.93 (m, 0.15)], [7.10 (d, J = 8.6 Hz, 0.3H), 7.05 (d, J = 8.6 Hz, 1.7H)], 6.64 (t, J = 9.5 Hz, 2H), [6.30 (d, J = 2.3 Hz, 0.15H), 6.23 (d, J = 2.3 Hz, 0.15H), 6.24 (d, J = 2.3 H Hz, 0.85H), 5.15 (s, 1H), 3.98 (d, J = 5.5 Hz, 1H), [2.20 (d, J = 3.7 Hz, 0.85H), 2.03 – 2.04 (m, 0.15H)], [1.88 – 1.80 (m, 0.85H), 1.74 – 1.68 (m, 0.15H)], 1.49 – 1.42 (m, 1H), 1.42 – 1.29 (m, 2H), 1.20 – 1.12 (m, 2H), [0.82 (t, J = 7.3 Hz, 0.45H), 0.74 (t, J = 7.3 Hz, 2.55H)]; ¹³C NMR (125 MHz, CDCl₃) § 179.1, 154.8, 153.6, 139.2, 134.6, 133.5, 131.4, 130.9, [130.7, 130.7], 130.5, 128.9, [128.6, 128.5], [128.2, 128.2], 127.8, [125.6, 121.63], [125.5, 121.3], 121.1, 120.7, 76.5, 76.0, [57.5, 56.9], [29.2, 29.1], [27.7, 27.3], [22.4, 22.2], [13.8, 13.8]; **HRMS** (ESI) calculated for [C₂₈H₂₇BrNO] [M+H]⁺: 472.1271, found: 472.1280. ¹H NMR (500 MHz, CDCl₃) δ 8.23 – 8.20 (m, 2H), 7.55 – 7.51 (m, 3H), 7.44 (d, J = 7.7 Hz, 1H), 7.23 – 7.19 (m, 1H), 7.13 – 7.04 (m, 4H), 6.62 (d, J = 8.6 Hz, 2H), 6.11 (d, *J* = 1.7 Hz, 1H), 5.71 (s, 1H), 4.04 (d, *J* = 8.1 Hz, 1H), 2.28 (d, *J* = 5.8 Hz, 1H), 1.90 – 1.83 (m, 1H), 1.42 – 1.36 (m, 1H), 1.35 – 1.26 (m, 2H), 1.18 – 1.11 (m, 2H), 0.72 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.7, 154.2, 148.9, 139.6, 134.4, 133.0, 131.1, 130.8, 129.4, 129.2, 129.1, 128.5, 128.2, 125.4, 122.9, 120.9, 120.8, 78.4, 75.9, 62.7, 29.0, 28.0, 22.2, 13.7; HRMS (ESI) calculated for [C₂₈H₂₇BrNO] [M+H]⁺: 472.1271, found: 472.1277.

2) 5-(4-bromophenyl)-2-butyl-2'-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (6)

To a dried reaction tube containing compound **3a** (90.0 mg, 0.20 mmol, 1.0 equiv.) in MeOH (2 mL) at RT was added NaBH₃CN (50.3 mg, 0.40 mmol, 2.0 equiv.), and AcOH (28.8 mg, 0.24 mmol, 1.2 equiv.). After 48 h, the reaction was quenched with saturated aqueous NaHCO₃ (10 mL), extracted successively with EA (3×10 mL), and the combined organics washed with brine (10 mL), dried by Na₂SO₄, The solvent was removed under reduced pressure. Then the residue was purified by silica gel column chromatography (PE/EA = 50:1 to 20:1) to afford the desired yellow solid product **6a**

(51.5 mg, 57%) and yellow oil product **6b** (11.7 mg, 13%): Two diastereoisomers can be separated by column chromatography on silica gel. ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 5.0 Hz, 4H), 7.36 – 7.32 (m, 1H), 7.07 (d, *J* = 8.2 Hz, 2H), 6.95 – 6.90 (m, 1H), 6.58 (d, *J* = 8.1 Hz, 3H), 6.49 (t, *J* = 7.4 Hz, 1H), 6.41 (d, *J* = 9.5 Hz, 2H), 5.32 (s, 1H), 4.14 (s, 1H), 3.56 (s, 1H), 2.70 – 2.58 (m, 1H), 2.52 – 2.45 (m, 1H), 1.82 – 1.73 (m, 2H), 1.47 (q, *J* = 7.4 Hz, 2H), 0.98 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 206.9, 180.9, 150.1, 137.4, 136.3, 132.3, 131.5, 130.4, 129.1, 128.9, 128.6, 128.3, 126.8, 125.2, 120.3, 119.0, 109.8, 70.3, 67.8, 57.5, 30.4, 29.5, 22.6, 13.9; m.p. = 125.7 - 126.3 °C; HRMS (ESI) calculated for [C₂₈H₂₆BrNNaO] [M+Na]⁺: 494.1090, found: 494.1086. ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.28 (m, 5H), 7.27 – 7.25 (m, 2H), 7.00 (t, *J* = 7.7 Hz, 1H), 6.84 (d, *J* = 8.5 Hz, 2H), 6.72 (d, *J* = 7.8 Hz, 1H), 6.42 (t, *J* = 7.5 Hz, 1H), 6.11 (s, 1H), 6.09 (d, *J* = 7.5 Hz, 1H), 5.07 (s, 1H), 4.26 (s, 1H), 4.14 (s, 1H), 1.75 – 1.68 (m, 1H), 1.40 – 1.33 (m, 1H), 1.28 – 1.20 (m, 2H), 1.02 – 0.95 (m, 2H), 0.66 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 207.0, 184.2, 151.1, 139.4, 136.6, 131.2, 131.1, 130.6, 128.7, 128.6, 128.3, 126.8, 126.6, 126.1, 121.0, 118.9, 109.3, 74.7, 68.6, 65.1, 30.5, 29.3, 22.2, 13.6; MALDI-MS calculated for [C₂₈H₂₇BrNO] [M+H]⁺: 472.1276, found: 472.0580.

7. The studies of biological activity

Antibacterial activity of compounds 3, 5 and 6a against *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) and *Xanthomonas axonopodis*. pv. *citri* (*Xac*):

Antibacterial activities of the title compounds against *Xoo* and *Xac* were evaluated by using the turbidimeter test. Thiodiazole-copper was used as the positive controls. The compound was dissolved in 150.0 μ L of dimethylformamide and diluted with 0.1% (*V* / *V*) Tween-20 to prepare the solutions on a concentration of 100 μ g/mL. 1.0 mL of the above solution was added to the non-toxic nutrient broth (NB: 1.5 g of beef extract, 2.5 g of peptone, 0.5 g of yeast powder, 5.0 g of glucose and 500 mL of distilled water, pH = 7.0 ~ 7.2) liquid medium in a 4.0 mL tube. Then, 40.0 μ L of NB solution containing *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) or *Xanthomonas axonopodis*. pv. *citri* (*Xac*) was added to 5.0 mL of the NB solution containing the test compound. The inoculated test tube was incubated at (28 ± 1) °C under continuous shaking at 200 rpm for 24 h. The culture growth was monitored by measuring the optical density at 595 nm (OD₅₉₅) and expressed as corrected turbidity. The relative inhibitory rate was calculated as follows:

 $I(\%) = (C_{\text{tur}} - T_{\text{tur}}) / C_{\text{tur}} \times 100\%$

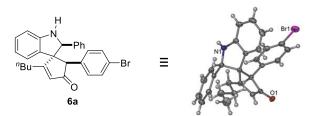
 C_{tur} : the corrected turbidity value of bacterial growth on untreated NB;

 T_{tur} : the corrected turbidity value of bacterial growth on treated NB;

I: The relative inhibitory rate.^[4]

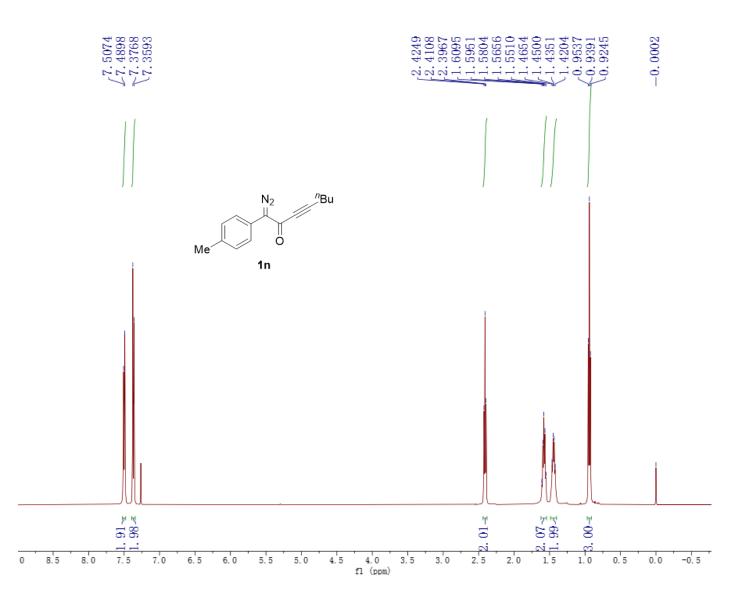
Supplementary Table 3. Inhibition rate of compound **3**, **5** and **6**a against *Xoo* and *Xac* at (100 μ g/mL). ^[a]

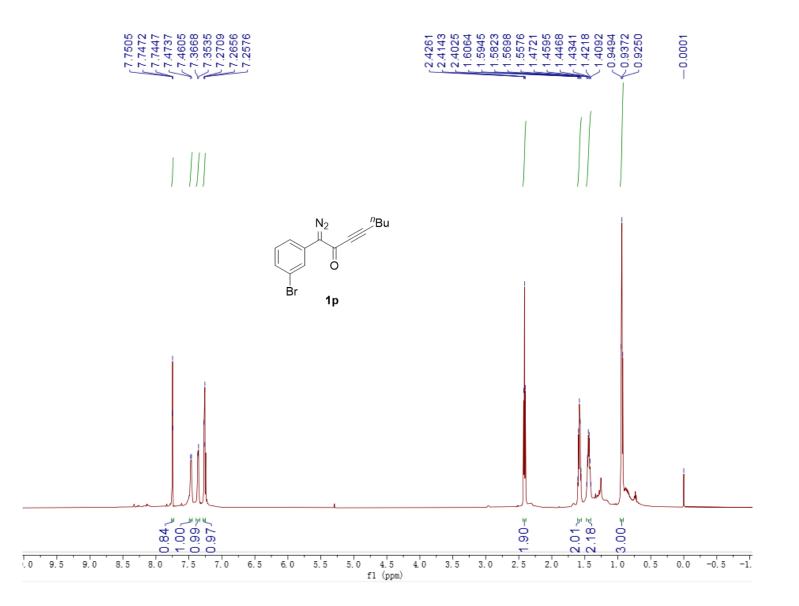
compounds	<i>Xoo</i> inhibition rate [%]	<i>Xac</i> inhibition rate [%]
3 a	50.05±2.68	7.37±3.81
3 b	29.58±1.95	43.49±5.03
3c	24.34±1.54	45.04±3.35
3d	54.41±5.65	5.42±2.28
3e	13.28±1.94	68.54±1.26
3 f	56.50±2.28	23.49±3.89
3g	21.42±4.48	46.13±3.06

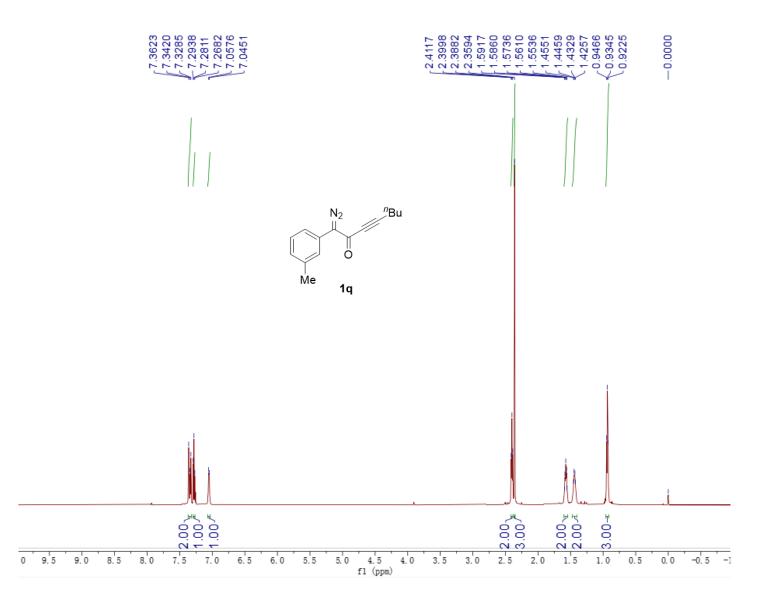

3h	64.68±2.88	42.40±2.0
3i	3.82±3.35	48.15±3.32
3k	0	41.21±0.59
31	71.68±1.27	67.38±2.52
3m	23.27±2.58	19.74±1.87
3 n	50.82±1.23	25.67±2.99
30	65.08±1.65	0
3 p	41.31±0.58	65.29±1.26
3 q	71.77±0.22	78.45±0.44
3r	56.64±0.77	54.87±1.27
3 s	33.22±0.57	52.70±2.27
3t	62.07±0.38	76.06±1.27
3 u	44.22±2.71	58.93±2.05
3v	63.63±2.52	0
5	76.72±0.70	78.73±2.46
6a	29.43±0.46	33.84±1.02
$\mathbf{BT}^{[b]}$	53.29±1.30	53.72±2.11
$\mathbf{TC}^{[b]}$	49.88±1.36	49.60±1.97
	ge data of three replicates; ^[b] Com Bismerthiazol TC – Thiodiazole-co	mercial bactericide was used as the

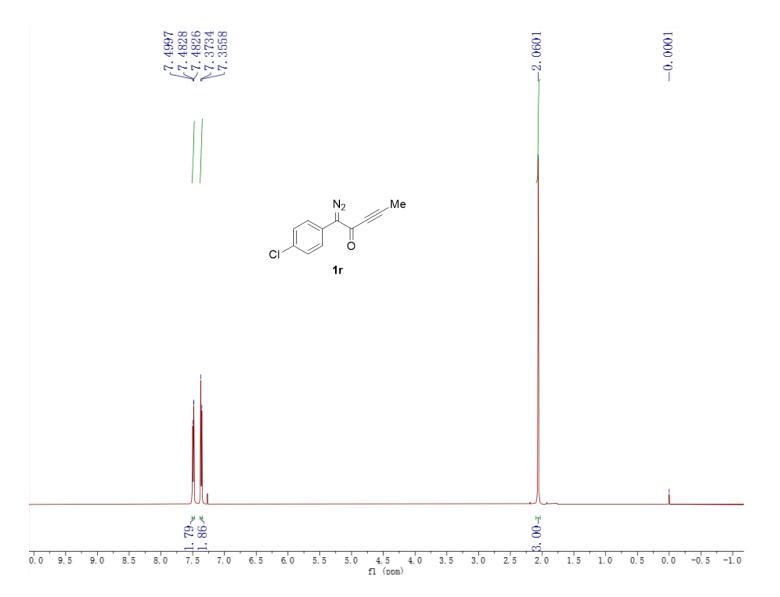
positive control, $\mathbf{BT} = \mathbf{B}$ is merthiazol, $\mathbf{TC} = \mathbf{Thiodiazole}$ -copper.

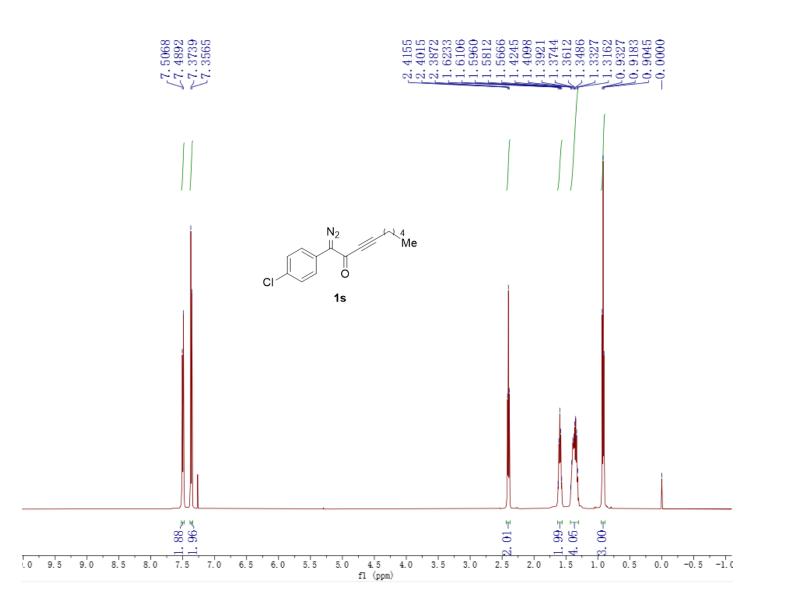
8. References

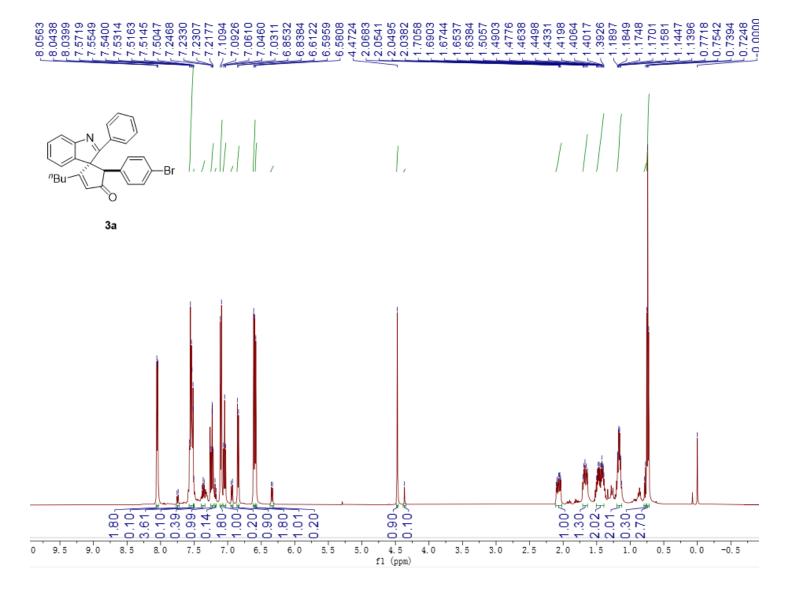

- a) H. Wang, J. R. Denton, H. M. L. Davies, *Org. Lett.* 2011, *13*, 4316–4319; b) X. Liu, M. Li, K. Dong, S. Peng, L. Liu, *Org. Lett.* 2022, *24*, 2175-2180; c) X. Liu, Z. Tang, Z. Li, L. Xu, L. Liu, *Nat. Commun.* 2021, *12*, 7298. c) X. Ji, C. Shen, Y. Ni, Z.-Y. Si, Y. Wang, X. Zhi, Y. Zhao, H. Peng and L. Liu, *Angew. Chem. Int. Ed.* 2024, e202400805 (3 of 8).
- 2. J. Zhao, Y. Zhang, and K. Cheng, J. Org. Chem. 2008, 73, 7428–7431.
- a) Å. González-Gómez, G. Domínguez, and J. Pérez-Castells, *Eur. J. Org. Chem.* 2009, 5057–5062; b) S. S. K. Boominathan, G. C. Senadi, J. K. Vandavasi, J. Y. F. Chen, and J.-J. Wang, *Chem. Eur. J.* 2015, *21*, 3193–3197; c) Z. Chen, X.-X. Shi,
 D.-Q. Ge, Z.-Z. Jiang, Q.-Q. Jin, H.-J. Jiang, J.-S. Wu, *Chinese Chemical Letters* 2017, *28*, 231–234; d) Y. Jiang and S. Youn, *Org. Lett.* 2014, *16*, 3720–3723.
- 4. Y. Chen, T. Li, Z. Jin, Y. R. Chi, J. Agric. Food Chem. 2022, 70, 6050-6058.

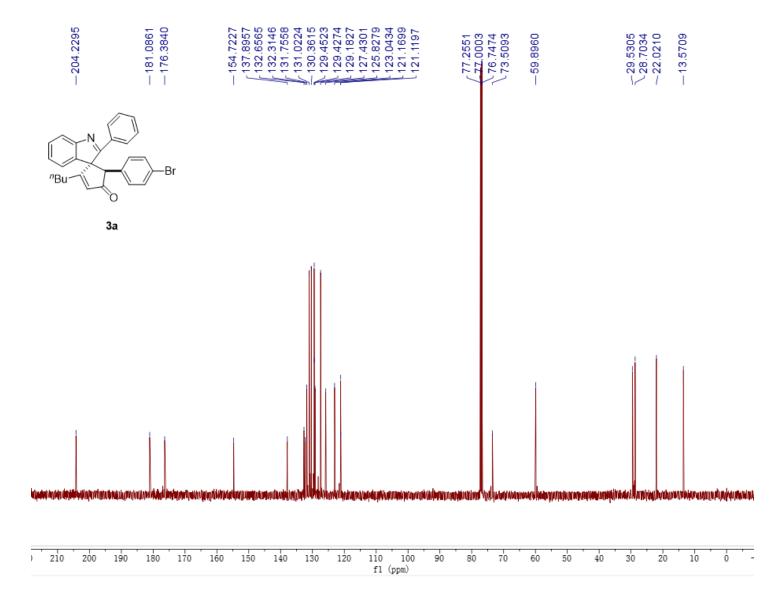

9. X-ray Crystal data for 6a

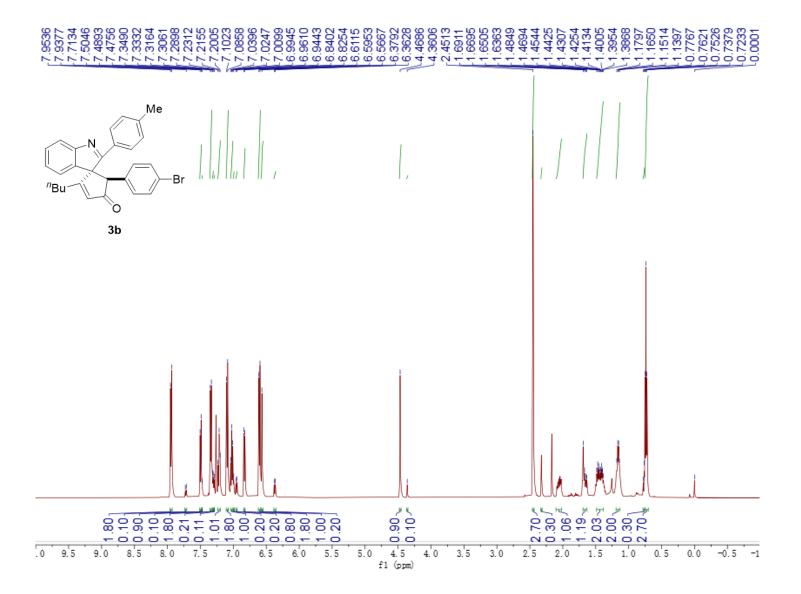


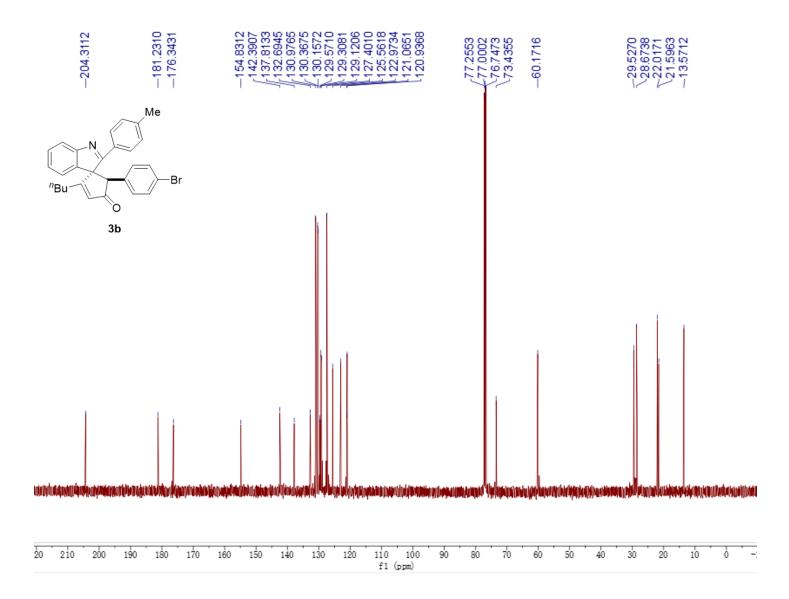

Identification code exp_4174_auto Empirical formula $C_{28}H_{26}BrNO$ Formula weight 472.41 Temperature/K $169.99(10)$ Crystal systemorthorhombicSpace group $P2_{12}I_{21}$ $a/Å$ $15.45840(10)$ $b/Å$ $15.99770(10)$ $c/Å$ $18.87770(10)$ $a/^{\circ}$ 90 $\beta/^{\circ}$ 90 γ'° 90 $\sqrt{2}$ 8 ρ_{calcg}/cm^3 1.344 μ/mm^{-1} 2.538 $F(000)$ 1952.0 Crystal size/mm³ $0.26 \times 0.22 \times 0.18$ Radiation $Cu Ka (\lambda = 1.54184)$ 2Θ range for data collection/° 7.244 to 134.15 Index ranges $-18 \le h \le 18, -19 \le k \le 19, -22 \le 1 \le 22$ Reflections collected 133994 Independent reflections $8340 (Psint = 0.0567, R_{sigma} = 0.0191]$ Data/restraints/parameters $8340/0/561$ Goodness-of-fit on F ² 1.042 Final R indexes [ID= 2σ (I)] $R_1 = 0.0230, wR_2 = 0.0596$ Final R indexes [all data] $R_1 = 0.0236, wR_2 = 0.0600$ Largest diff. peak/hole / e Å ⁻³ $0.33/-0.48$ Flack parameter $-0.020(4)$	Crystal data and structure refinemen	t for exp 4174 auto.
Empirical formula $C_{28}H_{26}BrNO$ Formula weight472.41Temperature/K169.99(10)Crystal systemorthorhombicSpace group $P2_12_12_1$ $a/Å$ 15.45840(10) $b/Å$ 15.99770(10) $c/Å$ 18.87770(10) $a/°$ 90 $\beta/°$ 90 $\gamma/°$ 90 $\gamma/°$ 90Volume/Å ³ 4668.43(5)Z8 ρ_{calcg}/cm^3 1.344 μ/mm^{-1} 2.538F(000)1952.0Crystal size/mm ³ 0.26 × 0.22 × 0.18RadiationCu Ka ($\lambda = 1.54184$)2 Θ range for data collection/°7.244 to 134.15Index ranges $-18 \le h \le 18, -19 \le k \le 19, -22 \le 1 \le 22$ Reflections collected133994Independent reflections8340 ($R_{int} = 0.0567, R_{sigma} = 0.0191$]Data/restraints/parameters83400/561Goodness-of-fit on F^2 1.042Final R indexes [$I \ge 2\sigma$ (I)] $R_1 = 0.0236, wR_2 = 0.0596$ Final R indexes [all data] $R_1 = 0.0236, wR_2 = 0.0600$ Largest diff. peak/hole / e Å ⁻³ 0.33/-0.48	•	-
Formula weight472.41Temperature/K169.99(10)Crystal systemorthorhombicSpace group $P2_12_12_1$ $a/Å$ 15.45840(10) $b/Å$ 15.99770(10) $c/Å$ 18.87770(10) $a/°$ 90 $\beta/°$ 90 $\gamma/°$ 90 $\gamma/°$ 90 $\gamma/°$ 90Volume/ų4668.43(5)Z8 ρ_{calcg}/cm^3 1.344 μ/mm^{-1} 2.538F(000)1952.0Crystal size/mm³0.26 × 0.22 × 0.18RadiationCu Ka ($\lambda = 1.54184$)2 Θ range for data collection/°7.244 to 134.15Index ranges $-18 \le h \le 18, -19 \le k \le 19, -22 \le 1 \le 22$ Reflections collected133994Independent reflections8340 [Rint = 0.0567, Rsigma = 0.0191]Data/restraints/parameters8340/0/561Goodness-of-fit on F²1.042Final R indexes [I>=2 σ (I)]R_1 = 0.0230, wR_2 = 0.0596Final R indexes [all data]R_1 = 0.0236, wR_2 = 0.0600Largest diff. peak/hole / e Å-³0.33/-0.48	Empirical formula	•
$\begin{array}{llllllllllllllllllllllllllllllllllll$	•	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Temperature/K	169.99(10)
$a/Å$ 15.45840(10) $b/Å$ 15.45840(10) $b/Å$ 15.99770(10) $c/Å$ 18.87770(10) a/\circ 90 β/\circ 90 γ/\circ 90 $Volume/Å^3$ 4668.43(5)Z8 $\rho_{calc}g/cm^3$ 1.344 μ/mm^{-1} 2.538F(000)1952.0Crystal size/mm^30.26 × 0.22 × 0.18RadiationCu K α (λ = 1.54184)2 Θ range for data collection/°7.244 to 134.15Index ranges-18 ≤ h ≤ 18, -19 ≤ k ≤ 19, -22 ≤ 1 ≤ 22Reflections collected133994Independent reflections8340 [R _{int} = 0.0567, R _{sigma} = 0.0191]Data/restraints/parameters8340/0/561Goodness-of-fit on F ² 1.042Final R indexes [I>=2 σ (I)]R ₁ = 0.0230, wR ₂ = 0.0596Final R indexes [all data]R ₁ = 0.0236, wR ₂ = 0.0600Largest diff. peak/hole / e Å ⁻³ 0.33/-0.48	-	orthorhombic
	Space group	P212121
c/Å18.87770(10) a'° 90 β'° 90 γ'° 90 γ'° 90Volume/Å ³ 4668.43(5)Z8 $\rho_{calc}g/cm^3$ 1.344 μ/mm^{-1} 2.538F(000)1952.0Crystal size/mm ³ 0.26 × 0.22 × 0.18RadiationCu Ka ($\lambda = 1.54184$)2 Θ range for data collection/°7.244 to 134.15Index ranges-18 ≤ h ≤ 18, -19 ≤ k ≤ 19, -22 ≤ 1 ≤ 22Reflections collected133994Independent reflections8340 [R _{int} = 0.0567, R _{sigma} = 0.0191]Data/restraints/parameters8340/0/561Goodness-of-fit on F ² 1.042Final R indexes [I>=2 σ (I)]R ₁ = 0.0230, wR ₂ = 0.0596Final R indexes [all data]R ₁ = 0.0236, wR ₂ = 0.0600Largest diff. peak/hole / e Å ⁻³ 0.33/-0.48	a/Å	15.45840(10)
$\begin{array}{lll} a/^{\circ} & 90 \\ \beta/^{\circ} & 90 \\ \gamma/^{\circ} & 90 \\ \text{Volume/Å}^3 & 4668.43(5) \\ Z & 8 \\ \rho_{calc}g/cm^3 & 1.344 \\ \mu/mm^{-1} & 2.538 \\ F(000) & 1952.0 \\ Crystal size/mm^3 & 0.26 \times 0.22 \times 0.18 \\ \text{Radiation} & Cu \ K\alpha \ (\lambda = 1.54184) \\ 2\Theta \ range \ for \ data \ collection/^{\circ} & 7.244 \ to \ 134.15 \\ \text{Index \ ranges} & -18 \le h \le 18, -19 \le k \le 19, -22 \le 1 \le 22 \\ \text{Reflections \ collected} & 133994 \\ \text{Independent \ reflections} & 8340 \ [R_{int} = 0.0567, \ R_{sigma} = 0.0191] \\ \text{Data/restraints/parameters} & 8340/0/561 \\ \text{Goodness-of-fit \ on \ F^2} & 1.042 \\ \text{Final \ R \ indexes \ [I>=2\sigma \ (I)]} & R_1 = 0.0230, \ wR_2 = 0.0596 \\ \text{Final \ R \ indexes \ [all \ data]} & R_1 = 0.0236, \ wR_2 = 0.0600 \\ \text{Largest \ diff. \ peak/hole \ / e \ Å^{-3}} & 0.33/-0.48 \end{array}$	b/Å	15.99770(10)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	c/Å	18.87770(10)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	a/°	90
$\begin{array}{lll} Volume/Å^3 & 4668.43(5) \\ Z & 8 \\ & & \\ & \rho_{calc}g/cm^3 & 1.344 \\ & & \\ & & \\ \mu/mm^{-1} & 2.538 \\ F(000) & 1952.0 \\ Crystal size/mm^3 & 0.26 \times 0.22 \times 0.18 \\ Radiation & Cu K\alpha (\lambda = 1.54184) \\ & 2\Theta \ range \ for \ data \ collection/^{\circ} & 7.244 \ to \ 134.15 \\ Index \ ranges & -18 \le h \le 18, -19 \le k \le 19, -22 \le l \le 22 \\ Reflections \ collected & 133994 \\ Independent \ reflections & 8340 \ [R_{int} = 0.0567, R_{sigma} = 0.0191] \\ Data/restraints/parameters & 8340/0/561 \\ Goodness-of-fit \ on \ F^2 & 1.042 \\ Final \ R \ indexes \ [I>=2\sigma \ (I)] & R_1 = 0.0230, \ wR_2 = 0.0596 \\ Final \ R \ indexes \ [all \ data] & R_1 = 0.0236, \ wR_2 = 0.0600 \\ Largest \ diff. \ peak/hole / e \ Å^{-3} & 0.33/-0.48 \\ \end{array}$	β/°	90
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma/^{\circ}$	90
$\begin{array}{lll} \rho_{calc}g/cm^{3} & 1.344 \\ \mu/mm^{-1} & 2.538 \\ F(000) & 1952.0 \\ Crystal size/mm^{3} & 0.26 \times 0.22 \times 0.18 \\ Radiation & Cu K\alpha (\lambda = 1.54184) \\ 2\Theta \ range \ for \ data \ collection/^{\circ} & 7.244 \ to \ 134.15 \\ Index \ ranges & -18 \le h \le 18, -19 \le k \le 19, -22 \le l \le 22 \\ Reflections \ collected & 133994 \\ Independent \ reflections & 8340 \ [R_{int} = 0.0567, R_{sigma} = 0.0191] \\ Data/restraints/parameters & 8340/0/561 \\ Goodness-of-fit \ on \ F^{2} & 1.042 \\ Final \ R \ indexes \ [I>=2\sigma \ (I)] & R_{1} = 0.0230, \ wR_{2} = 0.0596 \\ Final \ R \ indexes \ [all \ data] & R_{1} = 0.0236, \ wR_{2} = 0.0600 \\ Largest \ diff. \ peak/hole \ / \ e \ Å^{-3} & 0.33/-0.48 \end{array}$	Volume/Å ³	4668.43(5)
$\begin{array}{lll} \mu/mm^{-1} & 2.538 \\ F(000) & 1952.0 \\ Crystal size/mm^3 & 0.26 \times 0.22 \times 0.18 \\ Radiation & Cu \ K\alpha \ (\lambda = 1.54184) \\ 2\Theta \ range \ for \ data \ collection/^{\circ} & 7.244 \ to \ 134.15 \\ Index \ ranges & -18 \le h \le 18, \ -19 \le k \le 19, \ -22 \le 1 \le 22 \\ Reflections \ collected & 133994 \\ Independent \ reflections & 8340 \ [R_{int} = 0.0567, \ R_{sigma} = 0.0191] \\ Data/restraints/parameters & 8340/0/561 \\ Goodness-of-fit \ on \ F^2 & 1.042 \\ Final \ R \ indexes \ [I>=2\sigma \ (I)] & R_1 = 0.0230, \ wR_2 = 0.0596 \\ Final \ R \ indexes \ [all \ data] & R_1 = 0.0236, \ wR_2 = 0.0600 \\ Largest \ diff. \ peak/hole \ / \ e \ Å^{-3} & 0.33/-0.48 \end{array}$	Z	8
$\begin{array}{lll} F(000) & 1952.0 \\ Crystal size/mm^3 & 0.26 \times 0.22 \times 0.18 \\ Radiation & Cu \ K\alpha \ (\lambda = 1.54184) \\ 2\Theta \ range \ for \ data \ collection/^{\circ} & 7.244 \ to \ 134.15 \\ Index \ ranges & -18 \le h \le 18, \ -19 \le k \le 19, \ -22 \le l \le 22 \\ Reflections \ collected & 133994 \\ Independent \ reflections & 8340 \ [R_{int} = 0.0567, \ R_{sigma} = 0.0191] \\ Data/restraints/parameters & 8340/0/561 \\ Goodness-of-fit \ on \ F^2 & 1.042 \\ Final \ R \ indexes \ [I>=2\sigma \ (I)] & R_1 = 0.0230, \ wR_2 = 0.0596 \\ Final \ R \ indexes \ [all \ data] & R_1 = 0.0236, \ wR_2 = 0.0600 \\ Largest \ diff. \ peak/hole \ / \ e \ Å^{-3} & 0.33/-0.48 \end{array}$	$\rho_{calc}g/cm^3$	1.344
Crystal size/mm3 $0.26 \times 0.22 \times 0.18$ RadiationCu Ka ($\lambda = 1.54184$) 2Θ range for data collection/° 7.244 to 134.15Index ranges $-18 \le h \le 18, -19 \le k \le 19, -22 \le 1 \le 22$ Reflections collected133994Independent reflections 8340 [R _{int} = 0.0567, R _{sigma} = 0.0191]Data/restraints/parameters $8340/0/561$ Goodness-of-fit on F2 1.042 Final R indexes [I>= 2σ (I)]R ₁ = 0.0230, wR ₂ = 0.0596Final R indexes [all data]R ₁ = 0.0236, wR ₂ = 0.0600Largest diff. peak/hole / e Å-3 $0.33/-0.48$	μ/mm^{-1}	2.538
RadiationCu K α ($\lambda = 1.54184$)2 Θ range for data collection/°7.244 to 134.15Index ranges $-18 \le h \le 18, -19 \le k \le 19, -22 \le 1 \le 22$ Reflections collected133994Independent reflections8340 [R _{int} = 0.0567, R _{sigma} = 0.0191]Data/restraints/parameters8340/0/561Goodness-of-fit on F ² 1.042Final R indexes [I>=2 σ (I)]R ₁ = 0.0230, wR ₂ = 0.0596Final R indexes [all data]R ₁ = 0.0236, wR ₂ = 0.0600Largest diff. peak/hole / e Å ⁻³ 0.33/-0.48	F(000)	1952.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Crystal size/mm ³	$0.26 \times 0.22 \times 0.18$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Radiation	Cu Ka ($\lambda = 1.54184$)
Reflections collected 133994 Independent reflections $8340 [R_{int} = 0.0567, R_{sigma} = 0.0191]$ Data/restraints/parameters $8340/0/561$ Goodness-of-fit on F ² 1.042 Final R indexes [I>= 2σ (I)] $R_1 = 0.0230, wR_2 = 0.0596$ Final R indexes [all data] $R_1 = 0.0236, wR_2 = 0.0600$ Largest diff. peak/hole / e Å ⁻³ $0.33/-0.48$	2Θ range for data collection/°	7.244 to 134.15
Independent reflections $8340 [R_{int} = 0.0567, R_{sigma} = 0.0191]$ Data/restraints/parameters $8340/0/561$ Goodness-of-fit on F2 1.042 Final R indexes [I>=2 σ (I)] $R_1 = 0.0230, wR_2 = 0.0596$ Final R indexes [all data] $R_1 = 0.0236, wR_2 = 0.0600$ Largest diff. peak/hole / e Å-3 $0.33/-0.48$	Index ranges	$-18 \le h \le 18, -19 \le k \le 19, -22 \le l \le 22$
Data/restraints/parameters $8340/0/561$ Goodness-of-fit on F ² 1.042 Final R indexes [I>= 2σ (I)] $R_1 = 0.0230$, wR ₂ = 0.0596 Final R indexes [all data] $R_1 = 0.0236$, wR ₂ = 0.0600 Largest diff. peak/hole / e Å ⁻³ $0.33/-0.48$	Reflections collected	133994
Goodness-of-fit on F^2 1.042 Final R indexes [I>=2 σ (I)] R ₁ = 0.0230, wR ₂ = 0.0596 Final R indexes [all data] R ₁ = 0.0236, wR ₂ = 0.0600 Largest diff. peak/hole / e Å ⁻³ 0.33/-0.48	Independent reflections	8340 [$R_{int} = 0.0567$, $R_{sigma} = 0.0191$]
Final R indexes $[I>=2\sigma(I)]$ $R_1 = 0.0230, wR_2 = 0.0596$ Final R indexes [all data] $R_1 = 0.0236, wR_2 = 0.0600$ Largest diff. peak/hole / e Å ⁻³ $0.33/-0.48$	1	8340/0/561
Final R indexes [all data] $R_1 = 0.0236$, $wR_2 = 0.0600$ Largest diff. peak/hole / e Å ⁻³ $0.33/-0.48$	Goodness-of-fit on F ²	1.042
Largest diff. peak/hole / e Å ⁻³ $0.33/-0.48$	Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0230, wR_2 = 0.0596$
		$R_1 = 0.0236, wR_2 = 0.0600$
Flack parameter-0.020(4)		
	Flack parameter	-0.020(4)

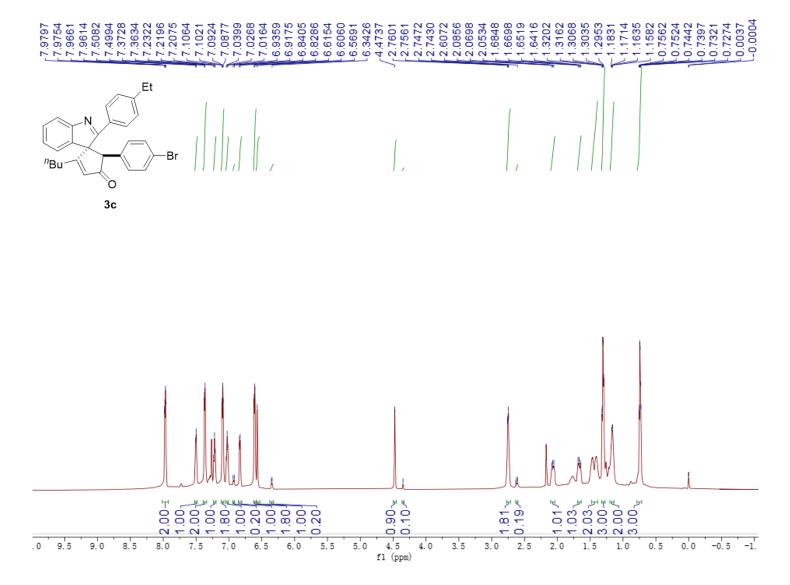

10.NMR and HRMS spectra of new compounds

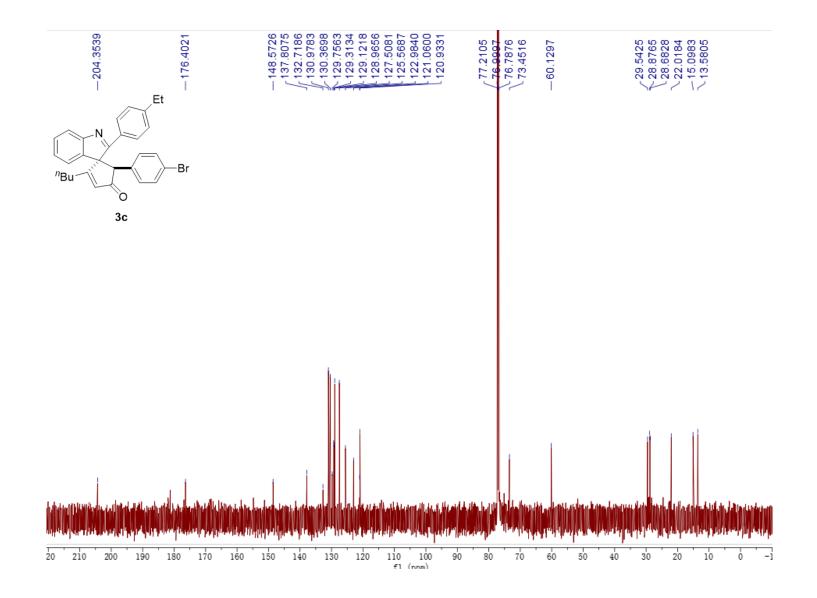


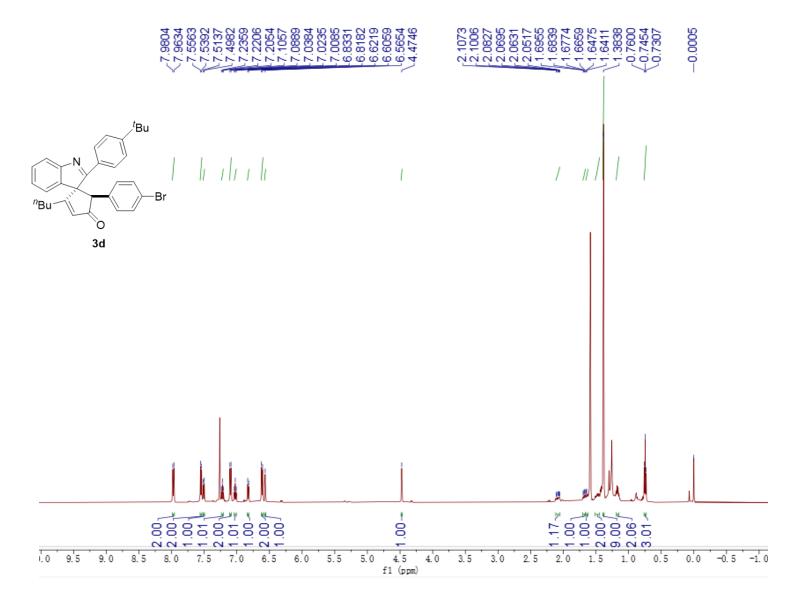


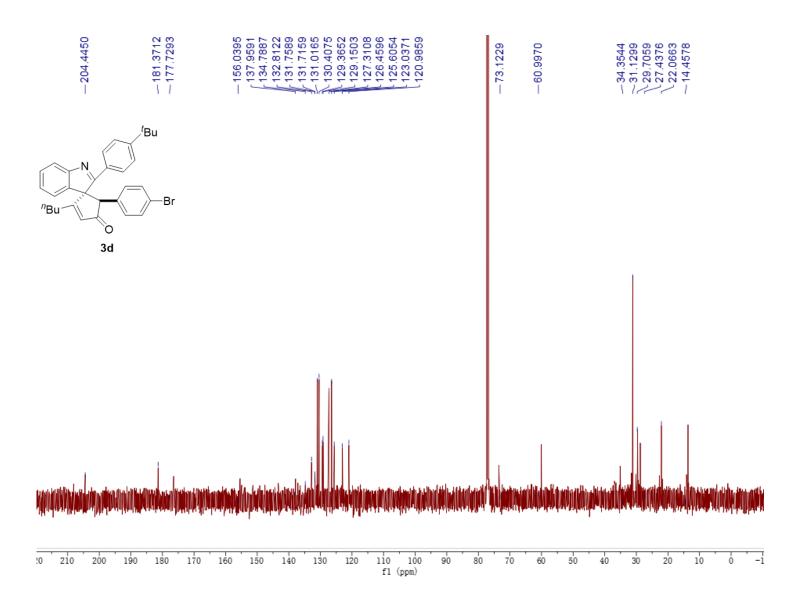


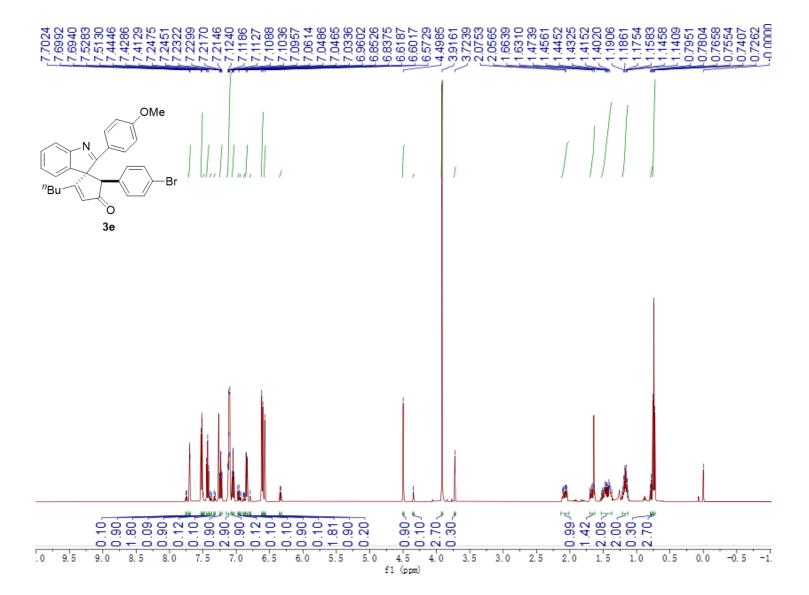


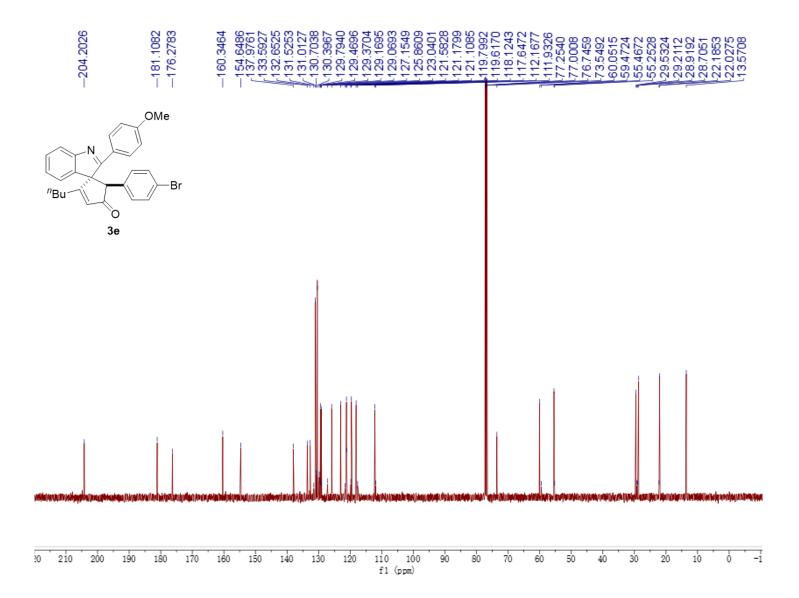


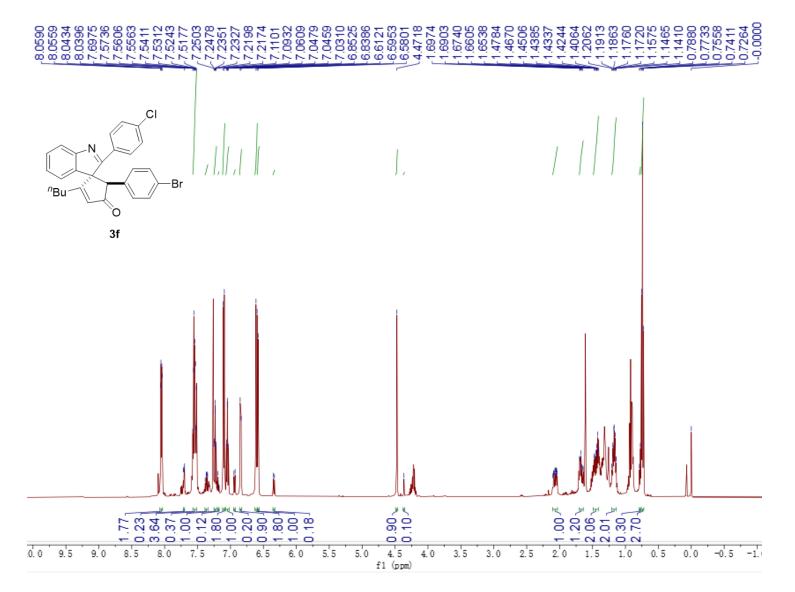


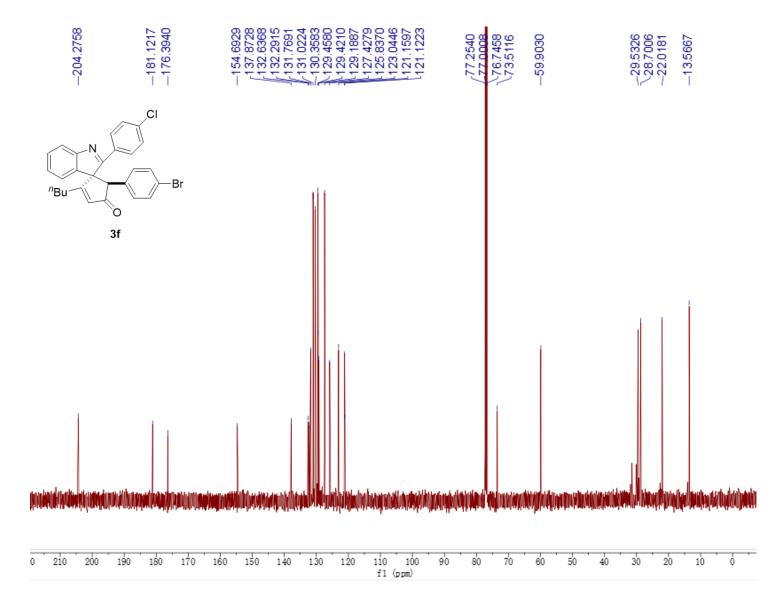




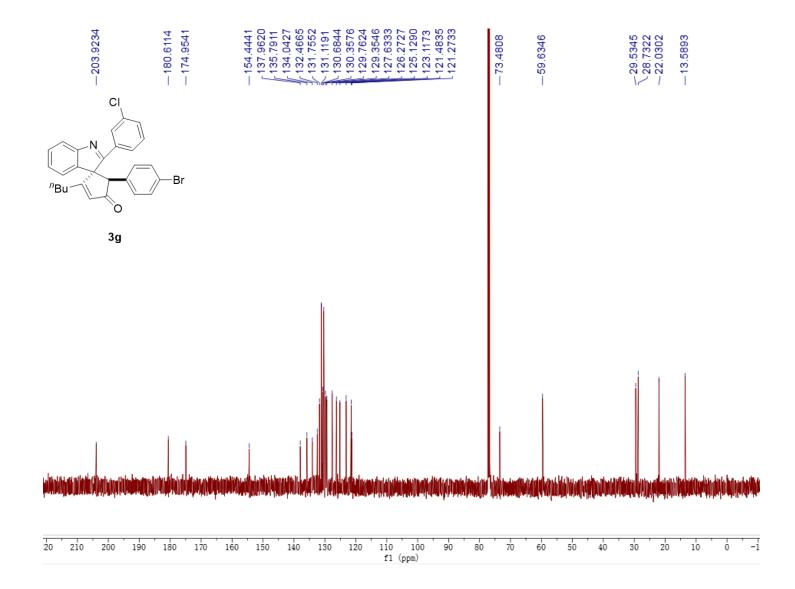


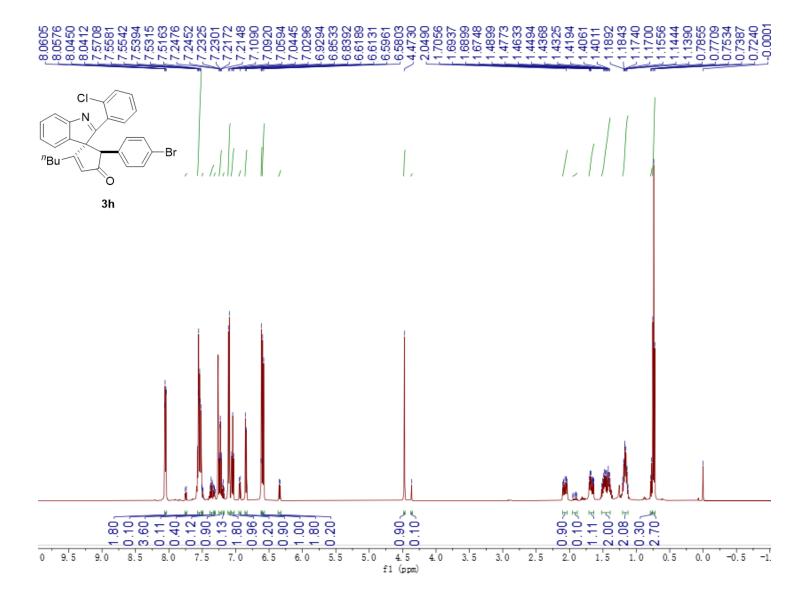


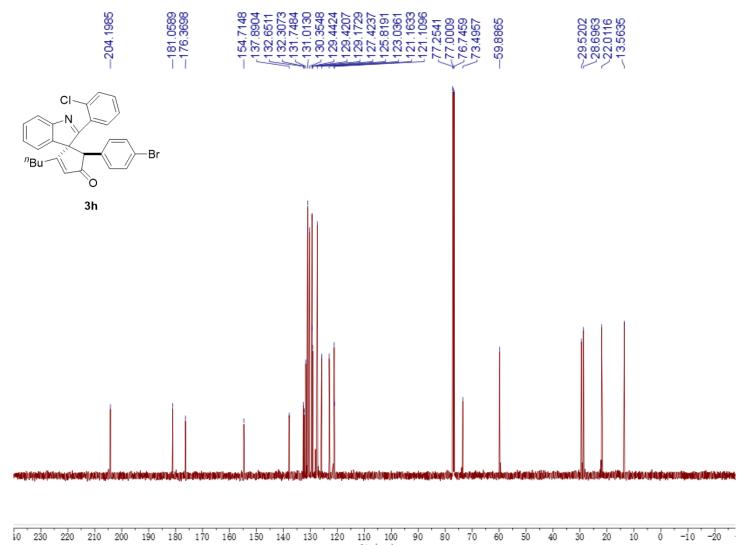


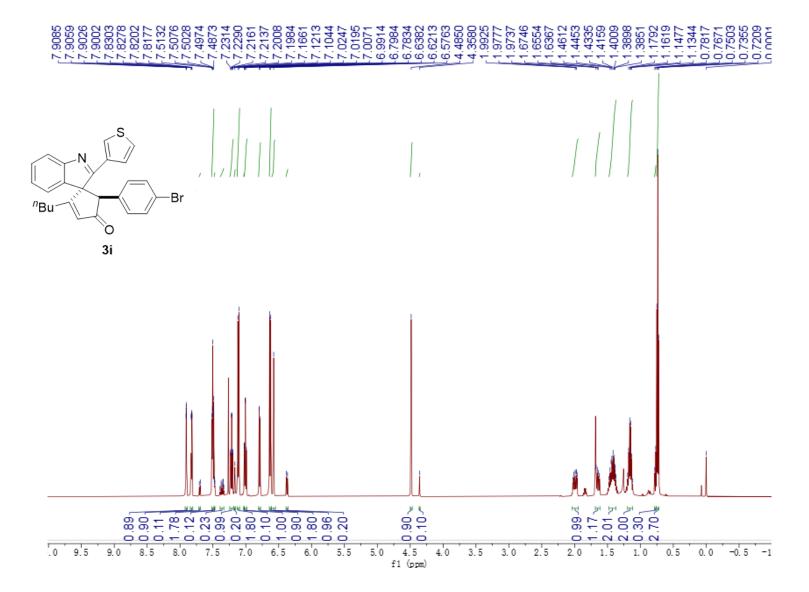

S43

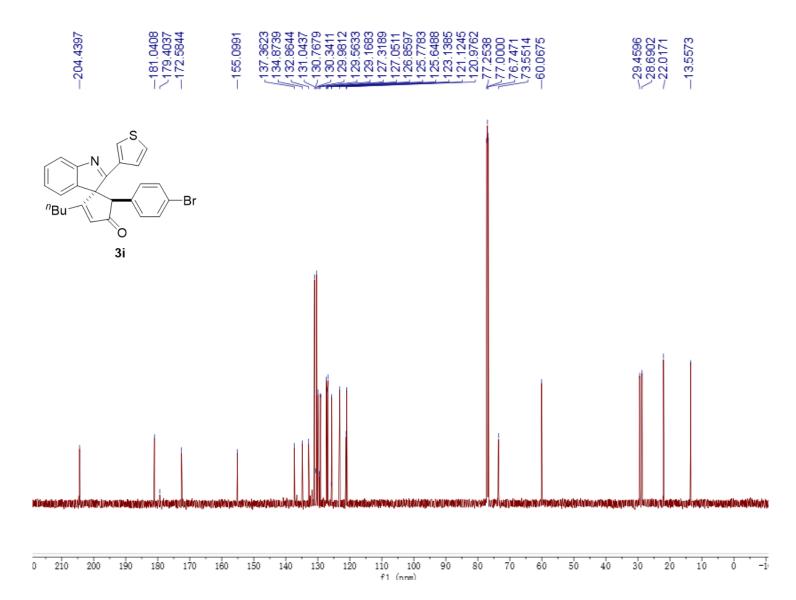


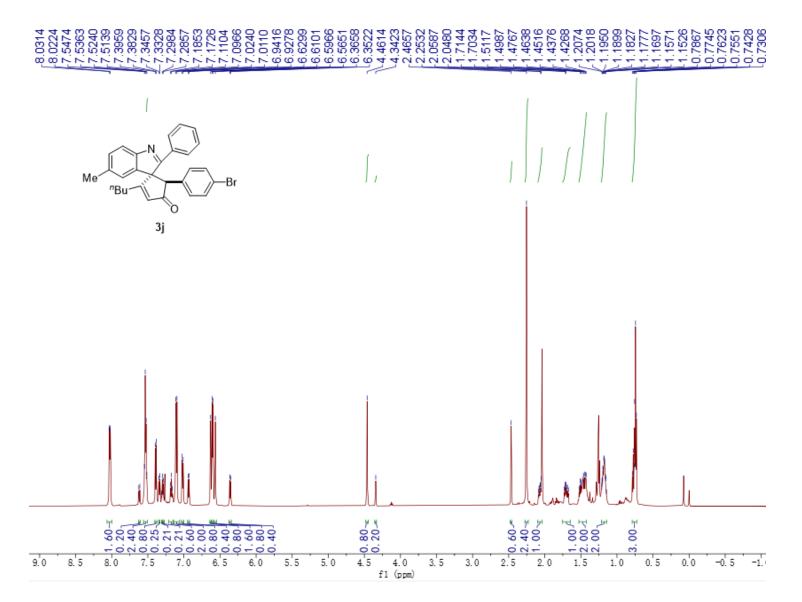


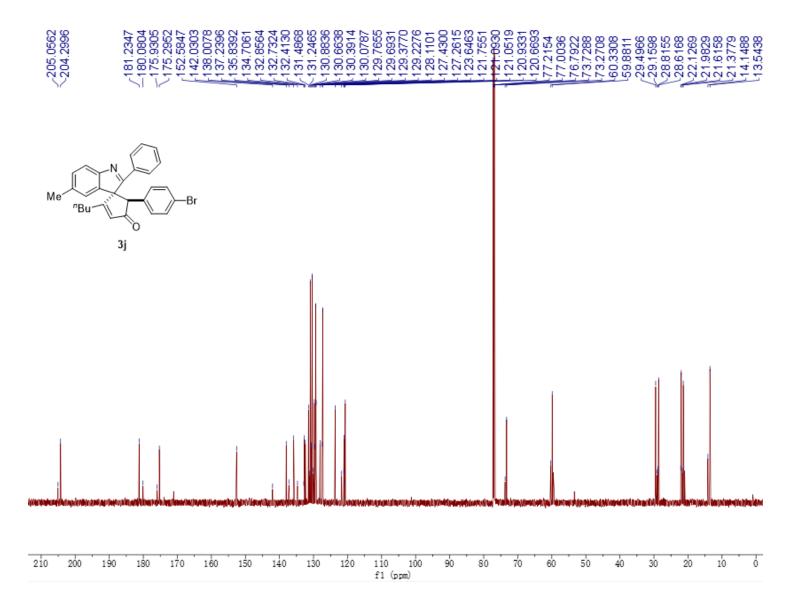


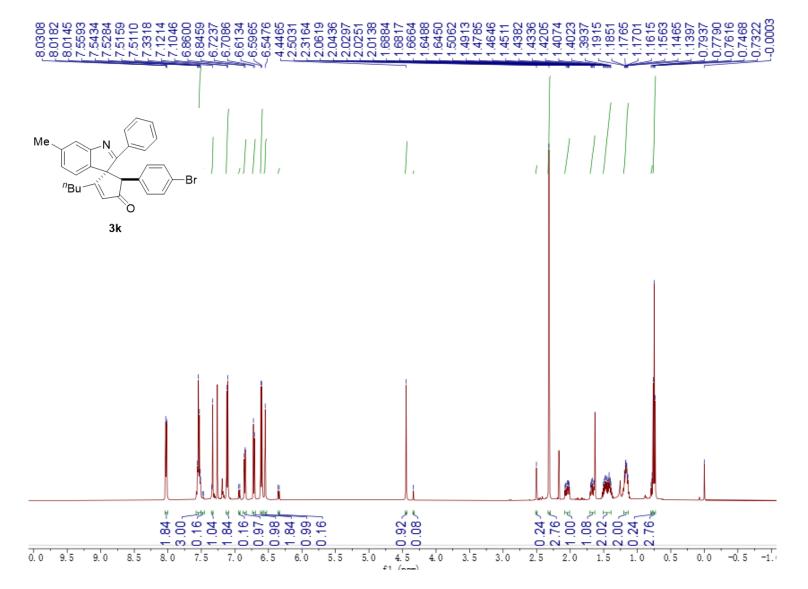


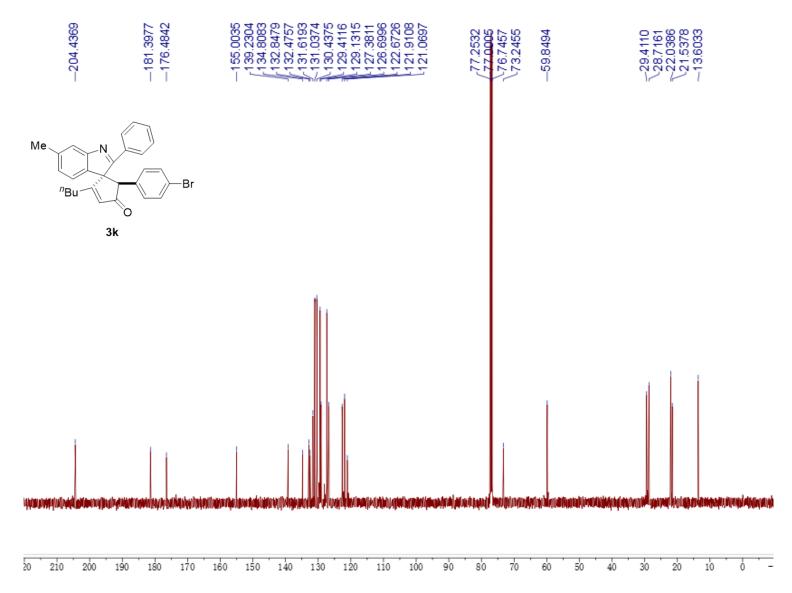


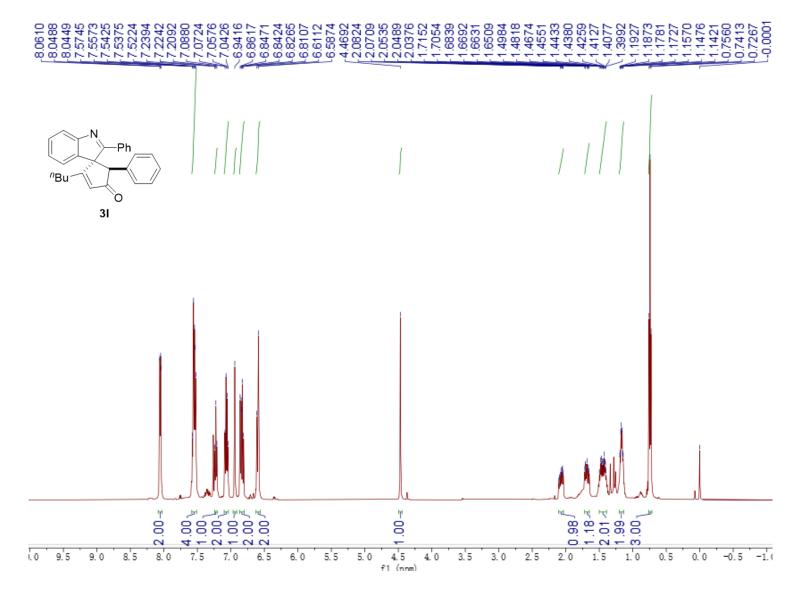


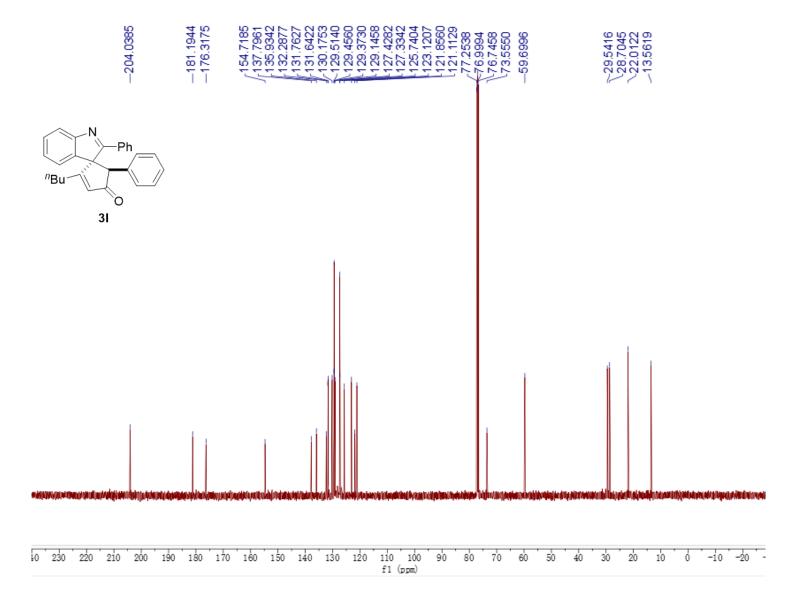


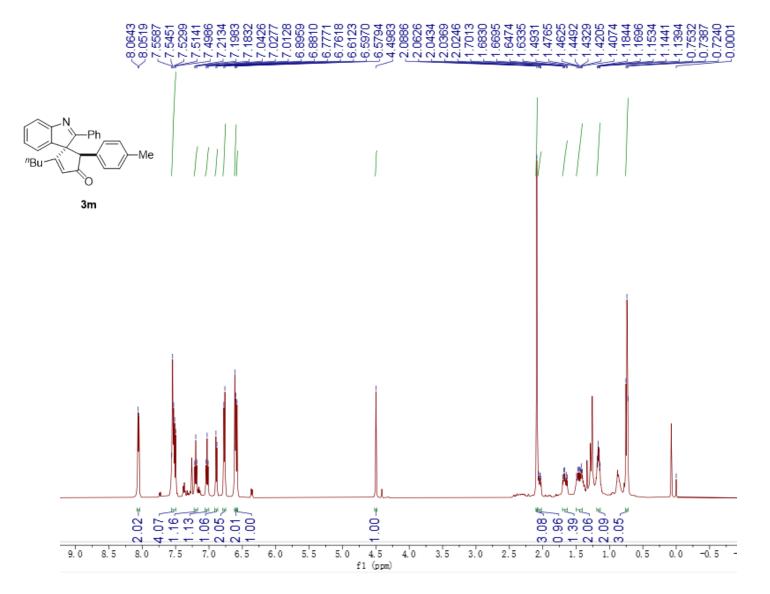


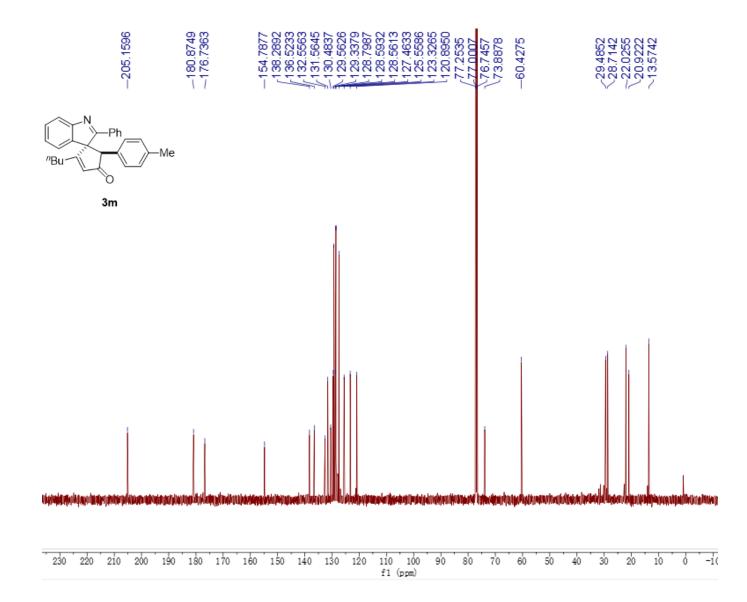


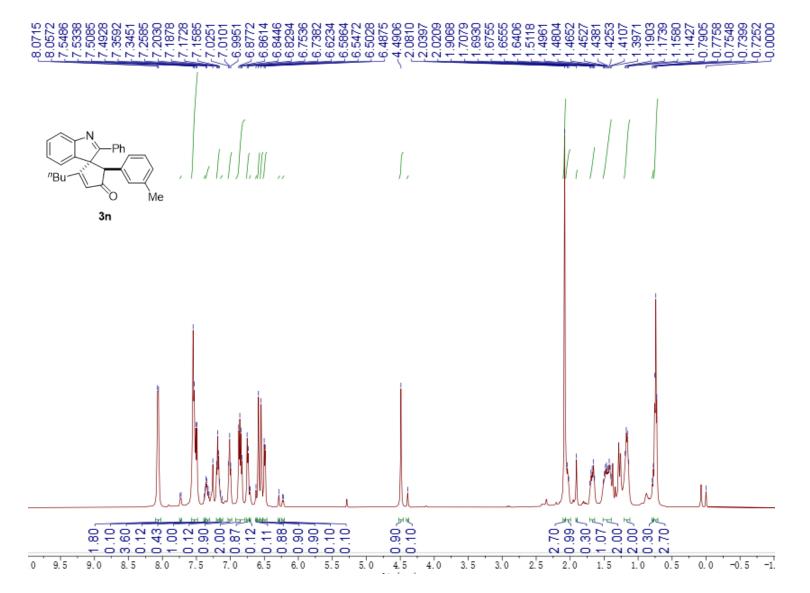


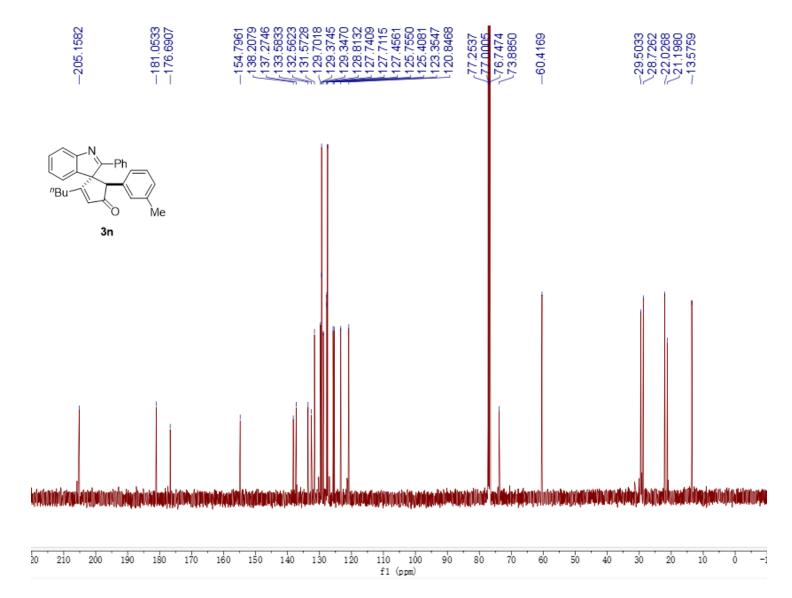

S54



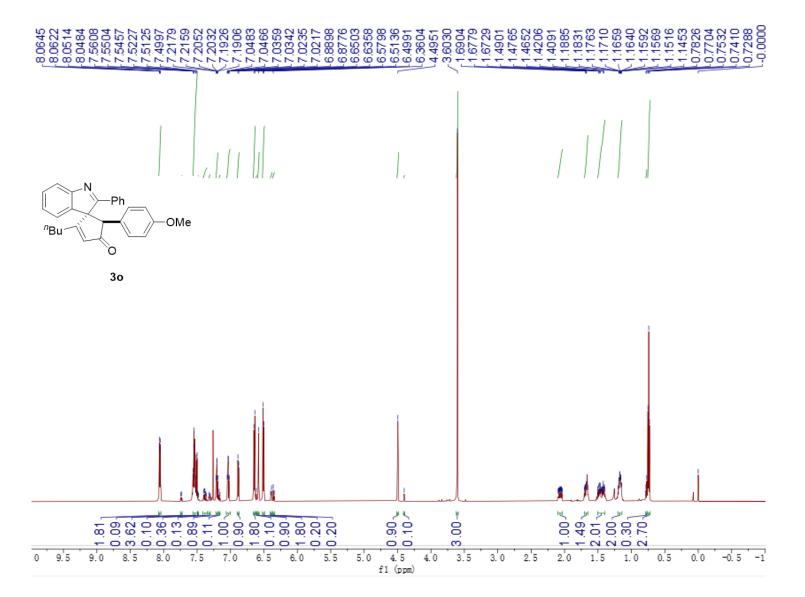


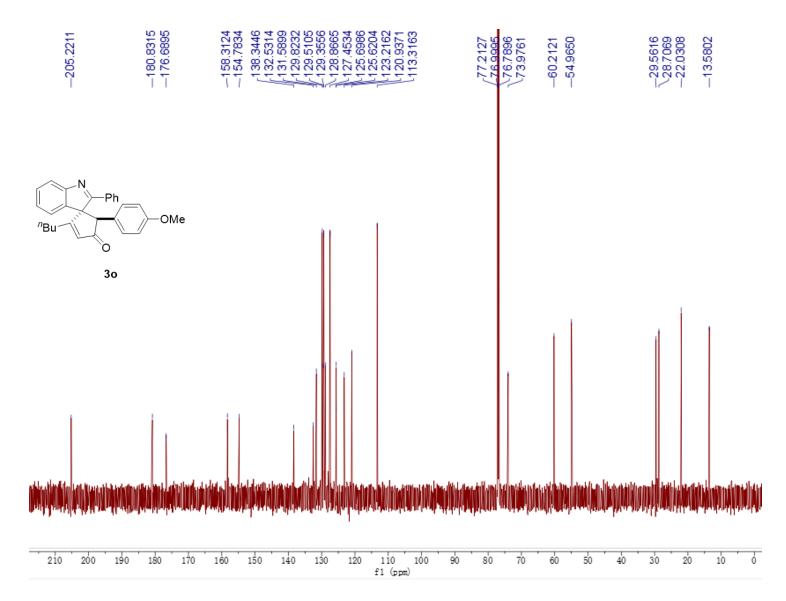


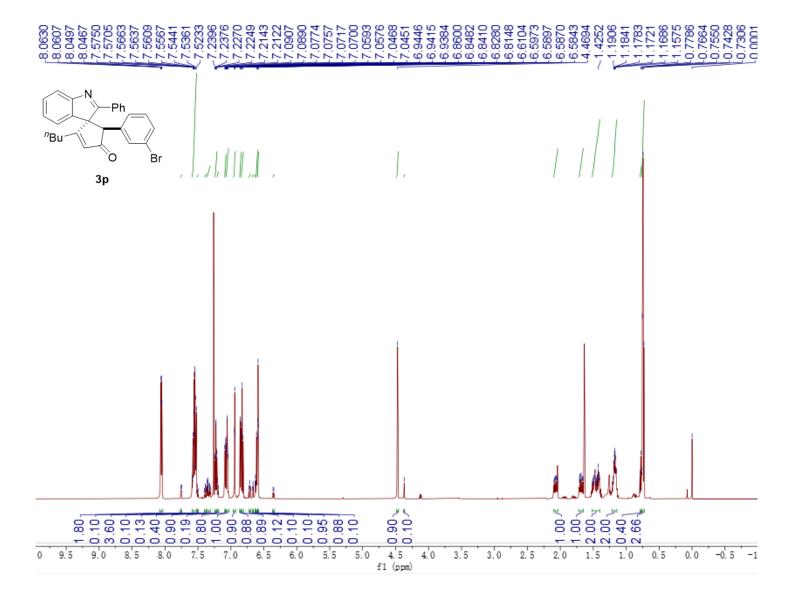


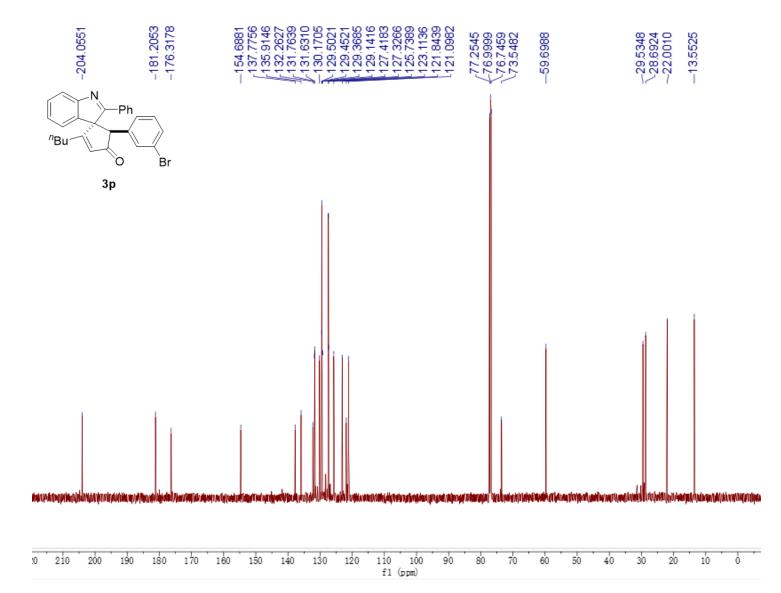


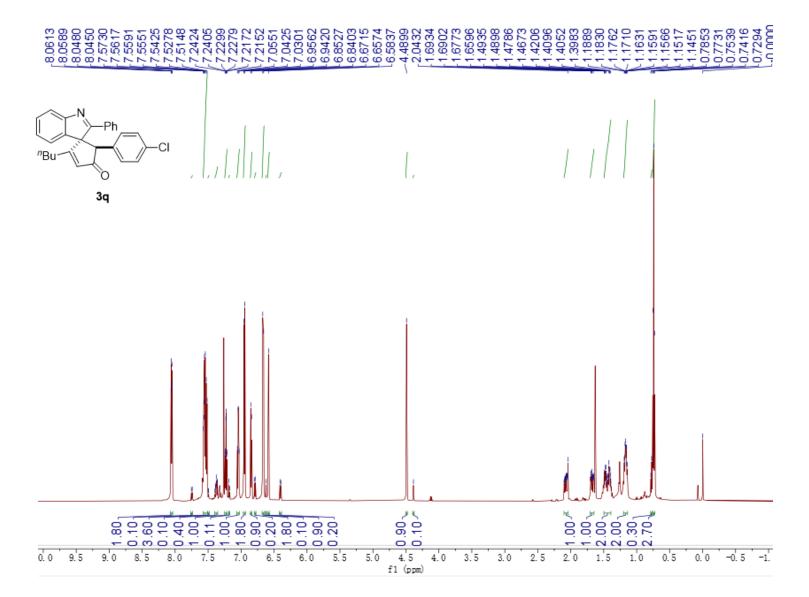
S60

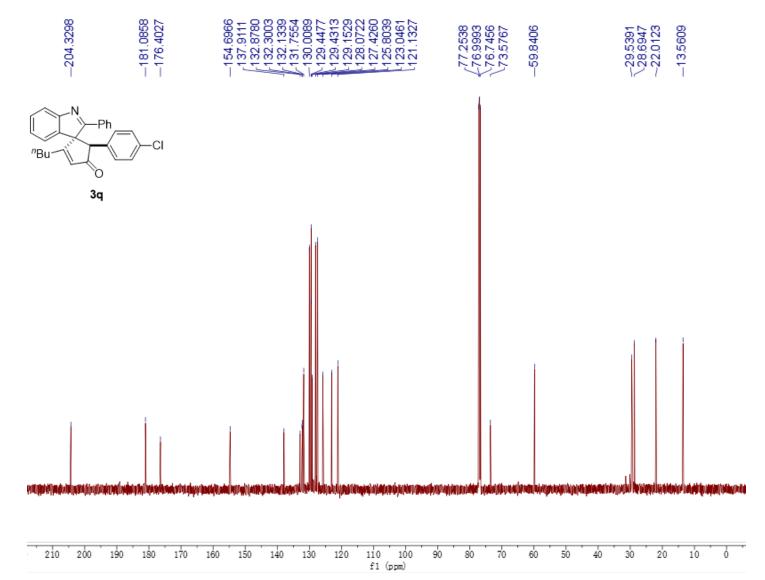


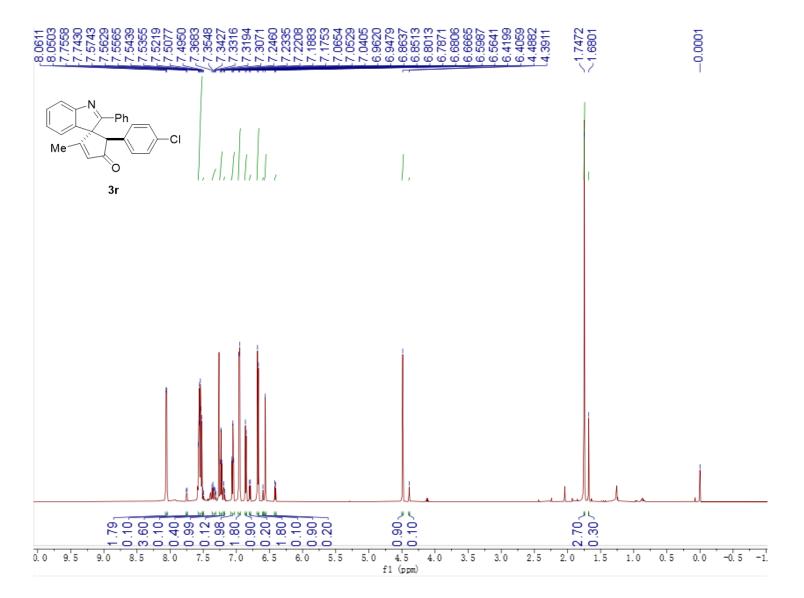


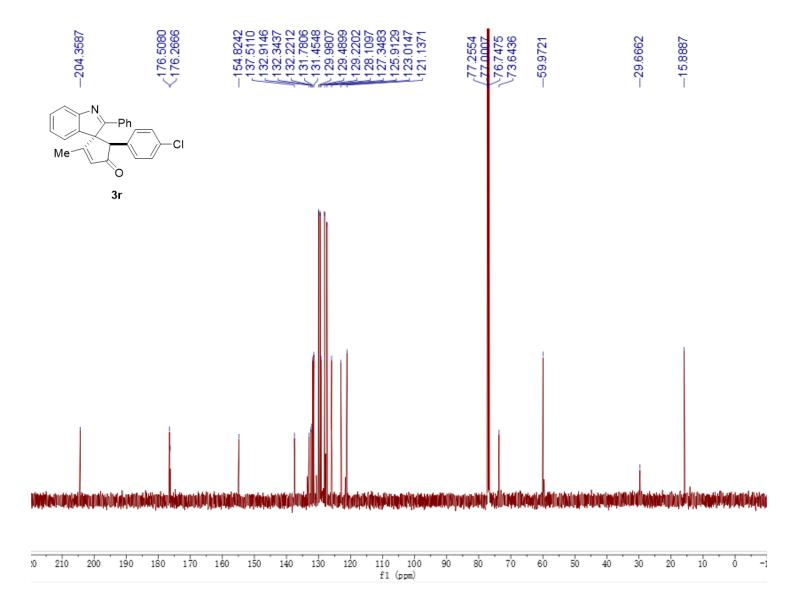


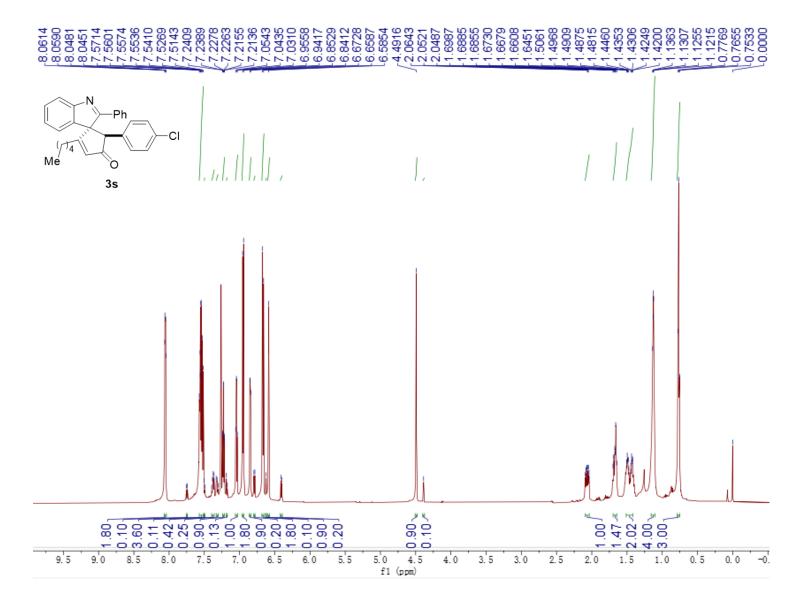


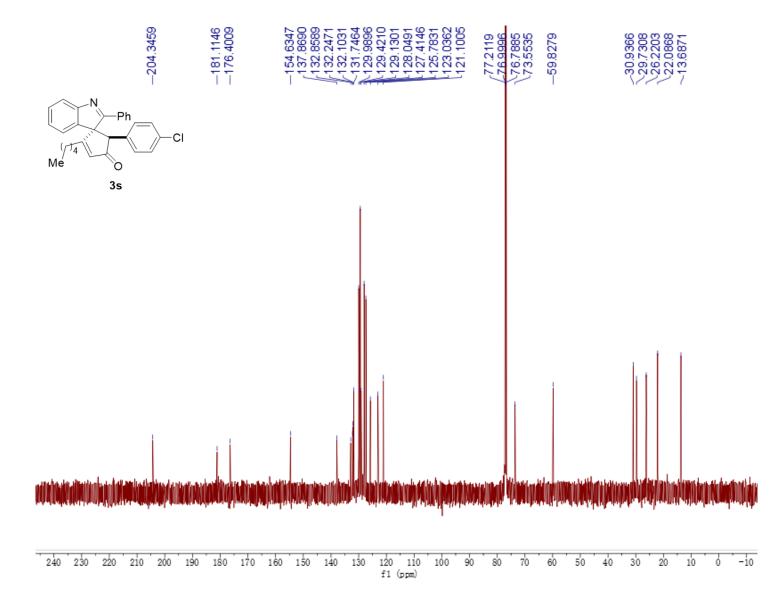

S64

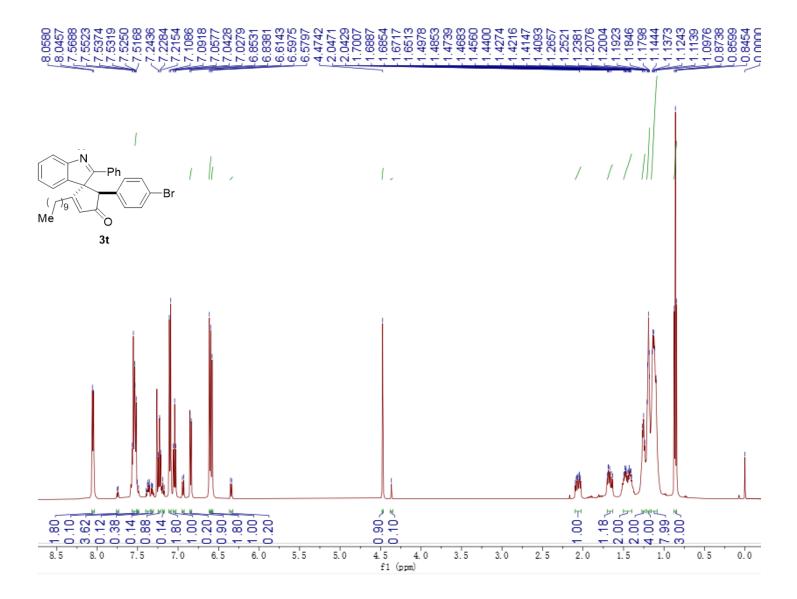


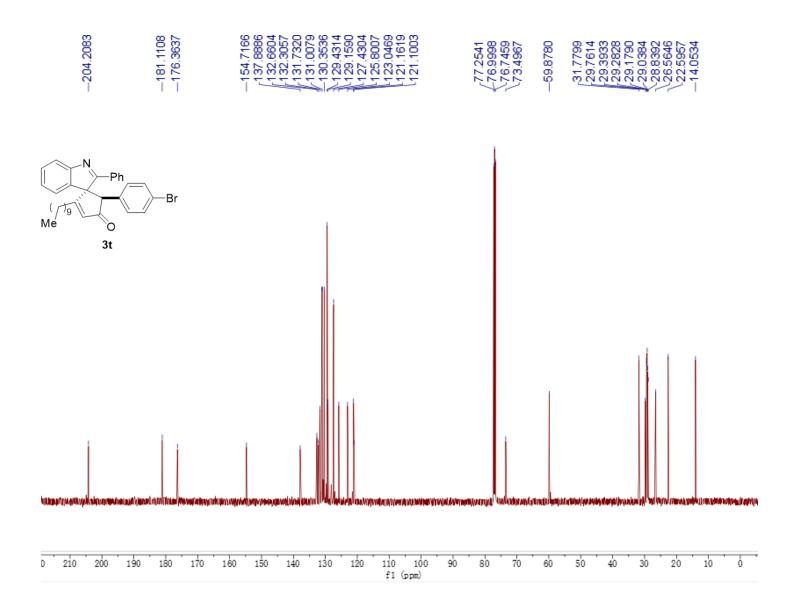


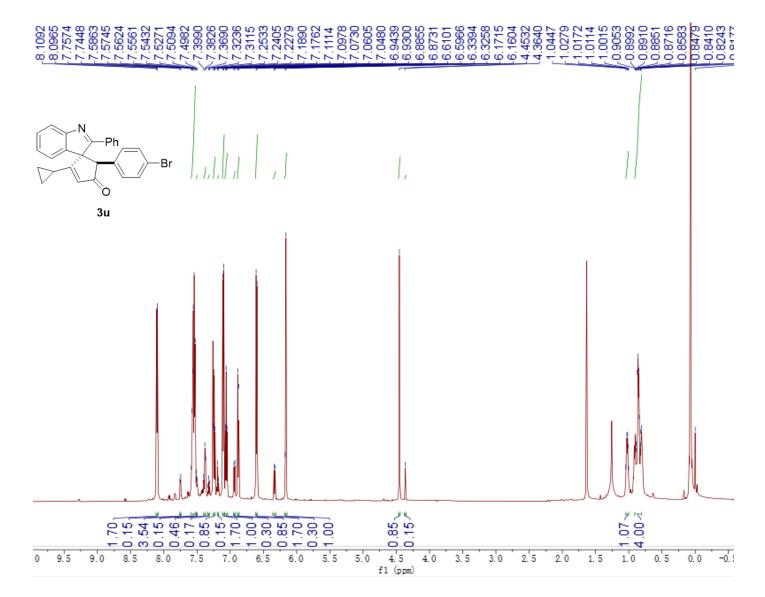


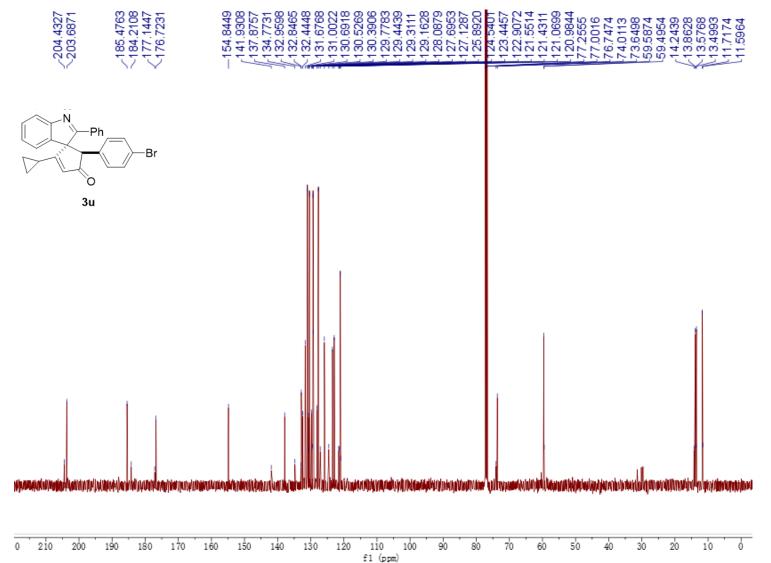

S70

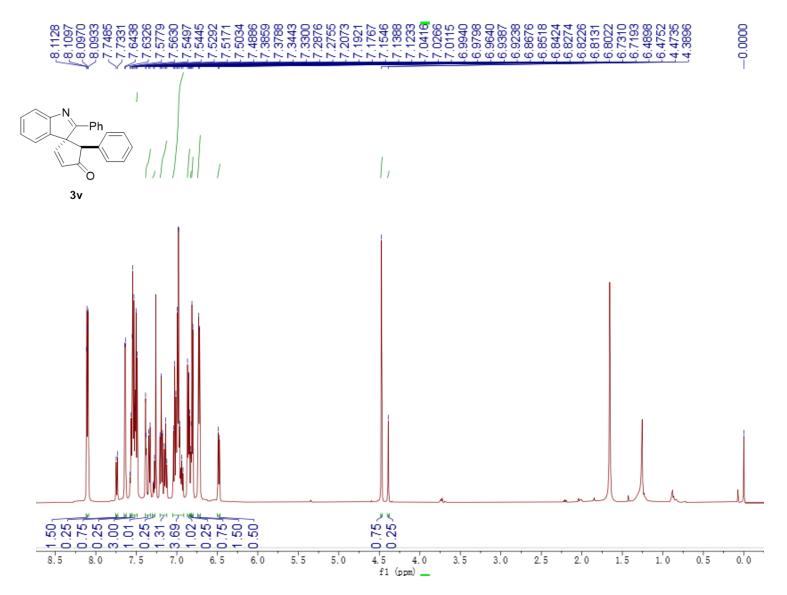


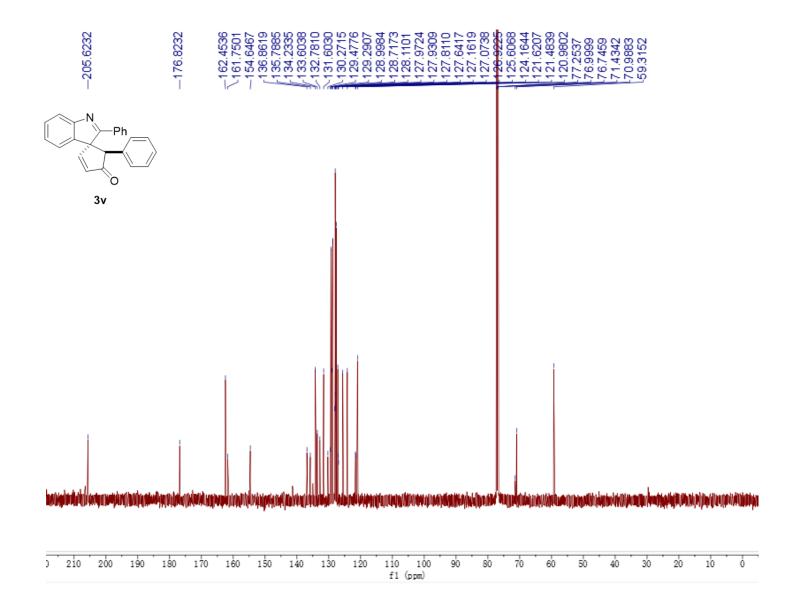

S71



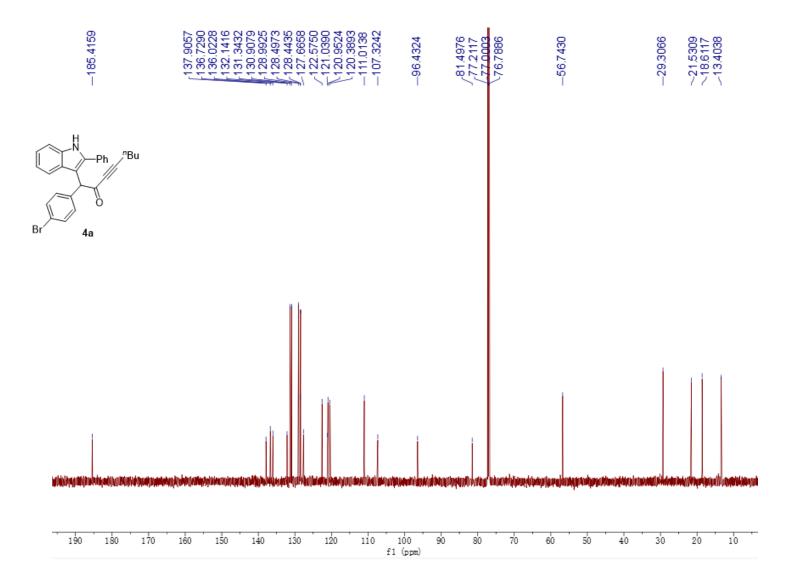

S72

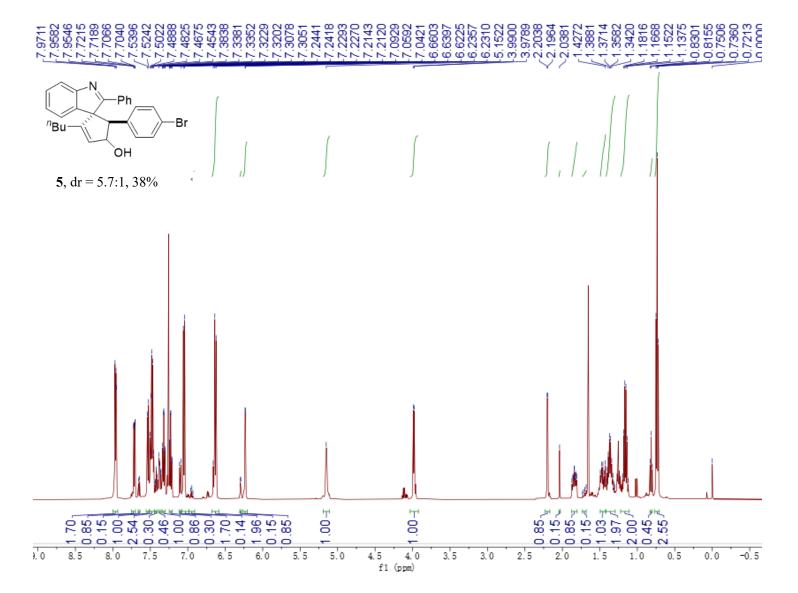


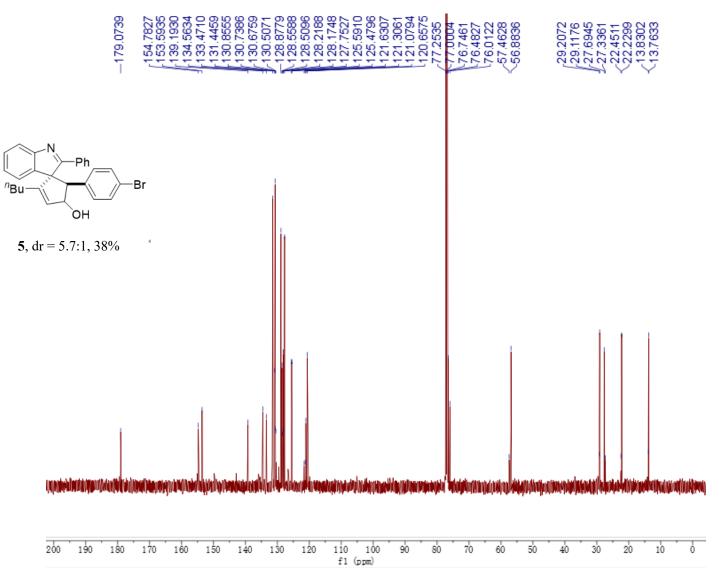


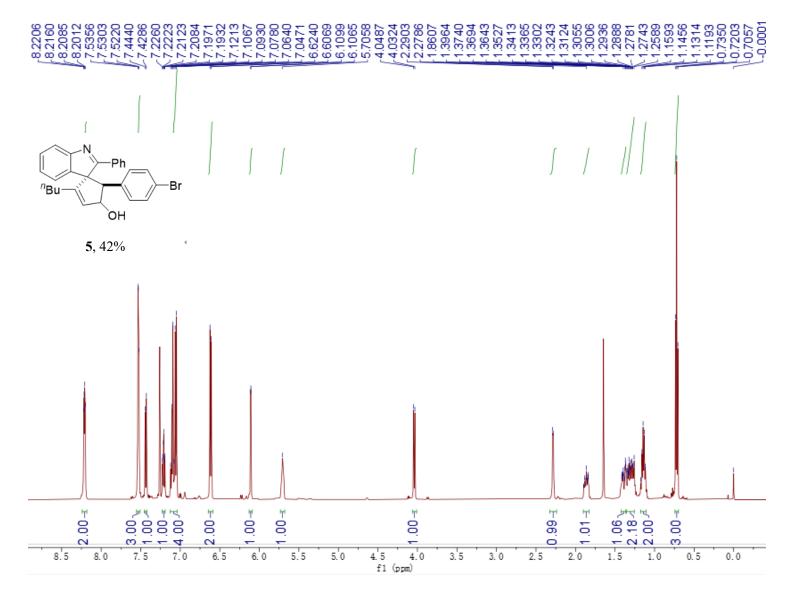


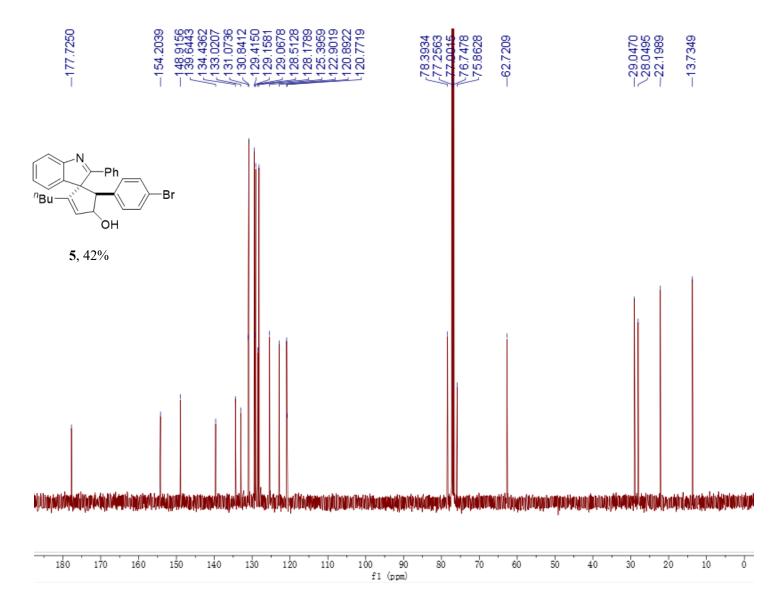


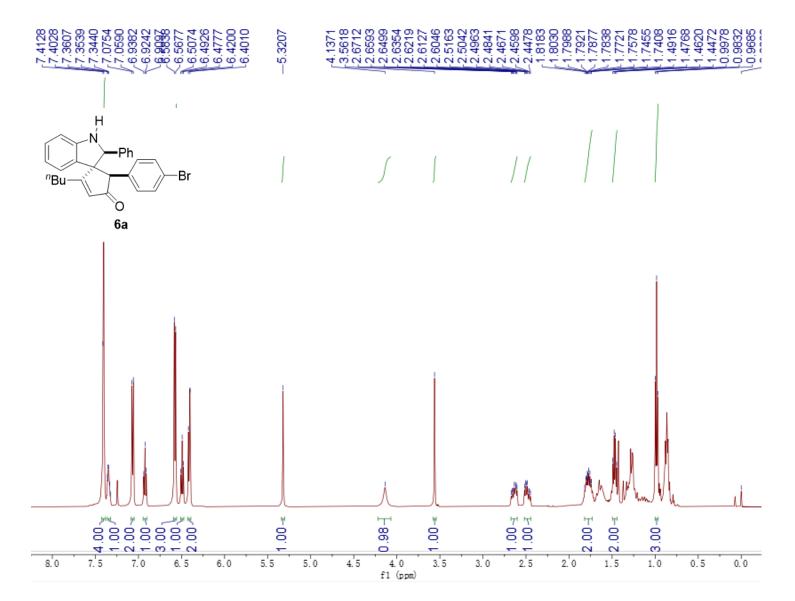


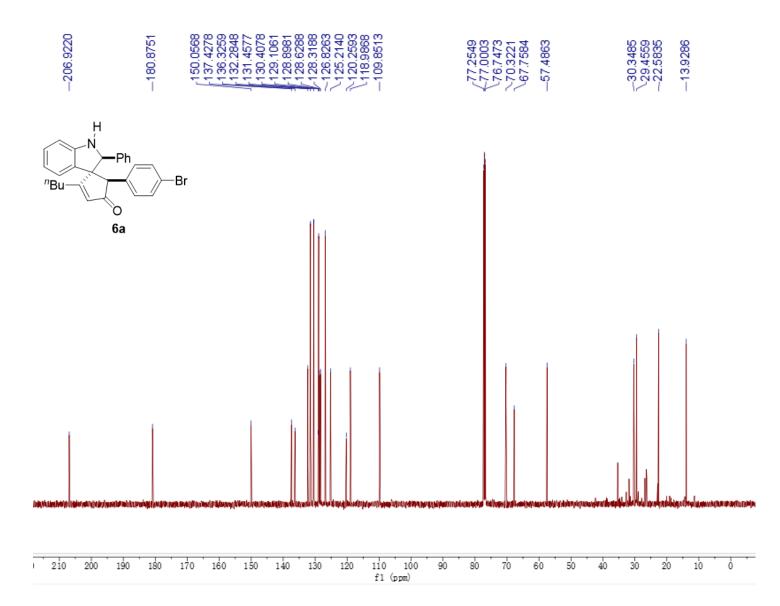


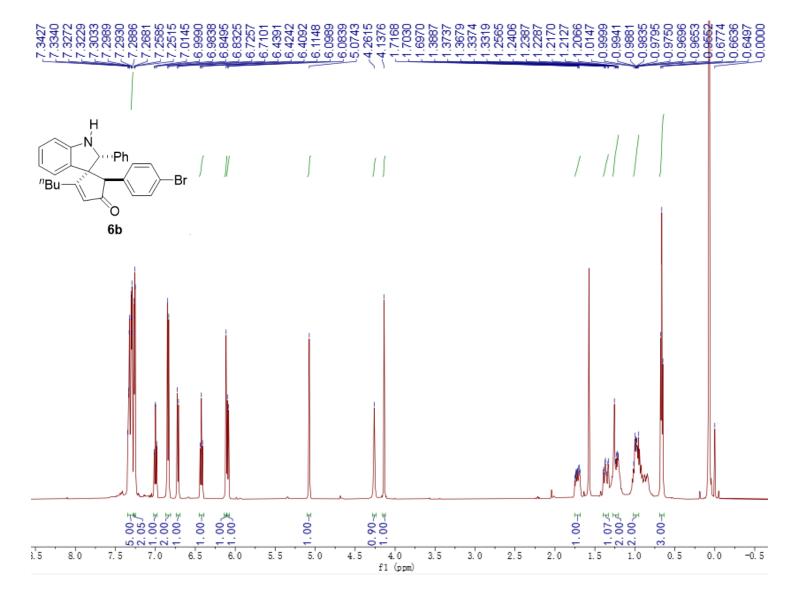


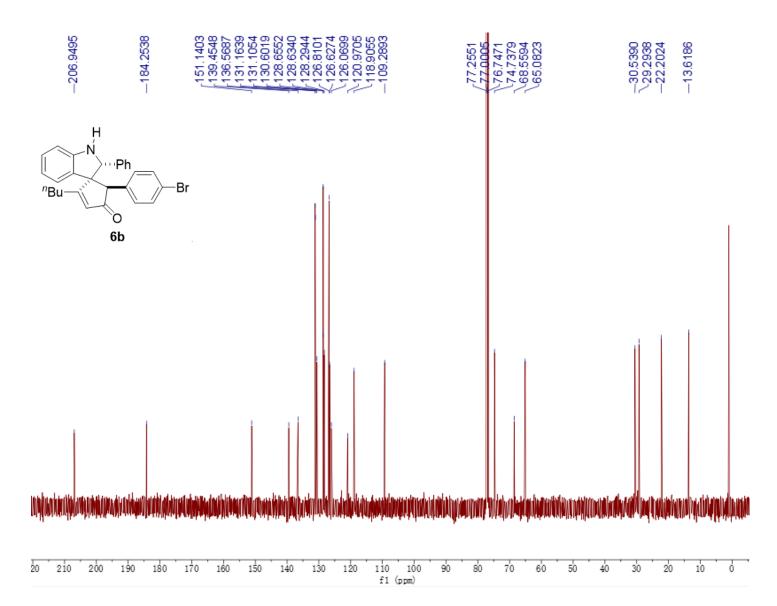


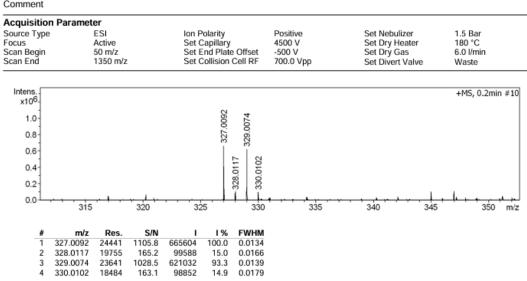







S84





Analysis Info

D:\Data\chem. dep\liulu\ZYT-1P_P1-C-1_01_50452.d Analysis Name Tune_pos_low_LC with calibration_2min_20210727.m ZYT-1P Method Sample Name Comment

4/15/2024 2:08:18 PM Acquisition Date

ECNU-Chem Operator maXis impact 282001.00122 Instrument

Meas. m/z 327.0092	Ion Formula C14H13BrN2NaO	err [ppm] 3.4	mSigma 28.8	1		e ⁻ Conf even	N-Rule ok

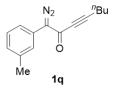
 N_2 ″Bu // 1p

Bruker Compass DataAnalysis 4.1

printed: 4/15/2024 3:22:50 PM

Page 1 of 1


by: ECNU-Chem


Analysis Info

Analysis Name D:\Data\chem. dep\iulu\ZYT-1Q_P1-C-2_01_50453.d Method Tune_pos_low_LC with calibration_2min_20210727.m Sample Name ZYT-1Q Comment Acquisition Date 4/15/2024 2:11:27 PM

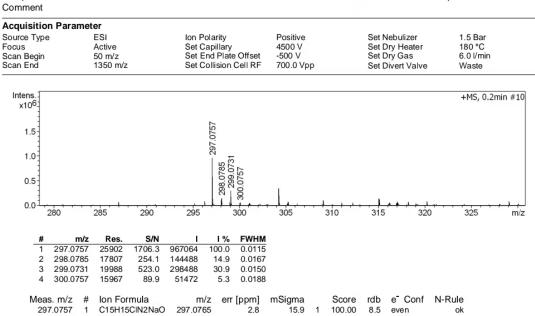
Operator ECNU-Chem Instrument maXis impact 282001.00122

Acquisition Par	ameter				
Source Type	ESI	on Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste

Bruker Compass DataAnalysis 4.1

printed: 4/15/2024 3:24:00 PM

0 PM by: ECNU-Chem


Analysis Info

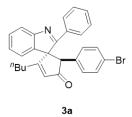
Analysis Name D:\Data\chem. dep\liulu\ZYT-1S_P1-C-5_01_50456.d Method Tune_pos_low_LC with calibration_2min_20210727.m Sample Name ZYT-1S

Acquisition Date 4/15/2024 2:21:03 PM

ECNU-Chem Operator

Instrument maXis impact 282001.00122

 N_2 4 Me || 0 CI 1s


Bruker Compass DataAnalysis 4.1

printed: 4/15/2024 3:25:48 PM

by: ECNU-Chem

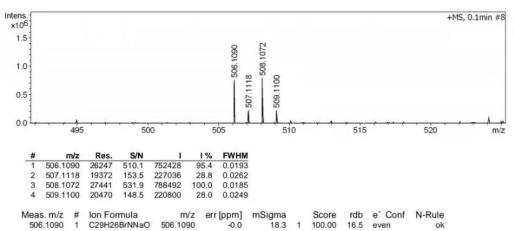
D:\Data\chem. dep	\liulu\ZYT-2-39-1_P1-A-6_0	01_50177.d	/loquisition Ed	4,0,202	-+ 7.00.00 F M
Tune_pos_low_LC ZYT-2-39-1	with calibration_2min_202	10727.m	Operator Instrument	ECNU-Ch maXis imp	em pact 282001.00122
ameter					
ESI Active 50 m/z 1350 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 700 0 Vpp	Set Dry H Set Dry (Heater Gas	1.5 Bar 180 °C 6.0 I/min Waste
					+MS, 0.2min #10
	192.0936 5 194.0918				
	- 493.0965 - 493.0965			1.	
	Tune_pos_low_LC ZYT-2-39-1 ameter ESI Active	Tune_pos_low_LC with calibration_2min_202 ZYT-2-39-1 ameter ESI Ion Polarity Active Set Capillary 50 m/z Set End Plate Offset	ameter ESI Ion Polarity Positive Active Set Capillary 4500 V 50 m/z Set End Plate Offset -500 V 1350 m/z Set Collision Cell RF 700.0 Vpp	D:\Data\chem. dep\liulu\ZYT-2-39-1_P1-A-6_01_50177.d Tune_pos_low_LC with calibration_2min_20210727.m ZYT-2-39-1 Operator Instrument ameter ESI Ion Polarity Positive Set Nebu Active Set Capillary 4500 V Set Dry 1 50 m/z Set End Plate Offset - 500 V Set Dry 0 1350 m/z Set Collision Cell RF 700.0 Vpp Set Diver	Tune_pos_low_LC with calibration_2min_20210727.m Operator ECNU-Ch ZYT-2-39-1 Instrument maXis imp ameter ESI Ion Polarity Positive Set Nebulizer Active Set Capillary 4500 V Set Dry Heater 50 m/z Set Collision Cell RF 700.0 Vpp Set Divert Valve

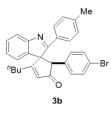
#	1	m/z	Res.	S/N	1	1%	FWH	M				
1	492.09	936	31703	1309.3	1762344	99.0	0.01	55				
2	493.09	965	24267	356.8	482284	27.1	0.02	03				
3	494.09	918	31874	1313.0	1780364	100.0	0.01	55				
4	495.09	945	23697	334.9	455532	25.6	0.02	09				
Meas	s. m/z	#	lon For	mula	m/z	err [p	pm]	mSigma		Score	Score rdb	Score rdb e ⁻ Conf
492	2.0936	1	C28H24	BrNNaO	492.0933		-0.4	22.8	1	1 100.00	1 100.00 16.5	1 100.00 16.5 even

Bruker Compass DataAnalysis 4.1

printed: 4/11/2024 12:52:03 PM

4 12:52:03 PM by: ECNU-Chem


Analysis Info D:\Data\chem.dep\\iulu\ZYT-2-141_P1-A-7_01_50178.d Method Tune_pos_low_LC with calibration_2min_20210727.m Sample Name ZYT-2-141

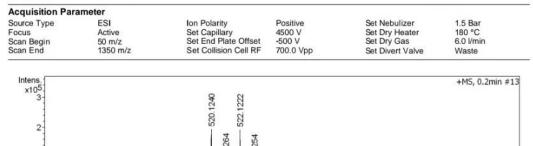

Comment

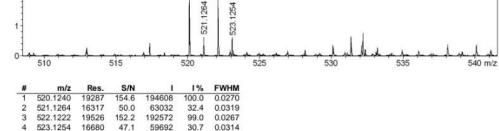
Acquisition Date 4/9/2024 7:09:06 PM

Operator ECNU-Chem Instrument maXis impact 282001.00122

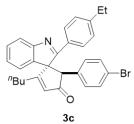
Acquisition Par	ameter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste

Bruker Compass DataAnalysis 4.1	printed: 4/11/2024 12:57:08 PM	by: ECNU-Chem	Page 1 of 1
Diaker Compass DataAnarysis 4.1	printed. 4/11/2024 12.57.00 F W	by. Lono-onem	Fage I UI I


Analysis Info


Analysis Name Method Sample Name Comment

D:\Data\chem. dep\liulu\ZYT-2-149_P1-A-8_01_50179.d Tune_pos_low_LC with calibration_2min_20210727.m ZYT-2-149


Acquisition Date 4/9/2024 7:12:14 PM

Operator Instrument ECNU-Chem maXis impact 282001.00122

Meas. m/z	#	Ion Formula	m/z	err [ppm]	mSigma		Score	rdb	e ⁻ Conf	N-Rule
520.1240	1	C30H28BrNNaO	520.1246	1.3	14.1	1	100.00	16.5	even	ok

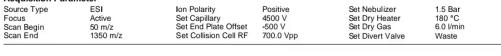
Bruker Compass DataAnalysis 4.1

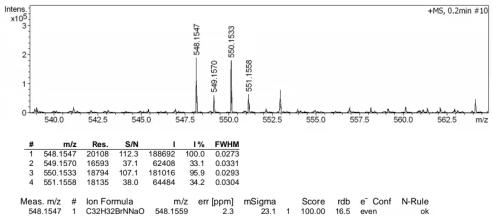
printed: 4/11/2024 12:57:59 PM

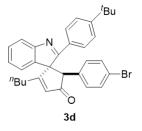
by: ECNU-Chem

Analysis Info

Analysis Name Method Sample Name Comment


D:\Data\chem. dep\liulu\ZYT-2-170_P1-A-9_01_50180.d Tune_pos_low_LC with calibration_2min_20210727.m ZYT-2-170


Acquisition Date 4/9/2024 7:15:21 PM


ECNU-Chem Operator Instrument

maXis impact 282001.00122

Acquisition Parameter

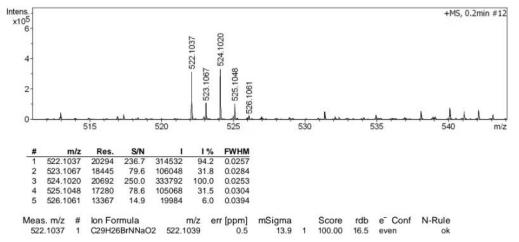
Bruker Compass DataAnalysis 4.1

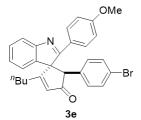
printed: 4/11/2024 12:59:10 PM

by: ECNU-Chem

Analysis Info

Analysis Name Method Sample Name Comment


D:\Data\chem. dep\liulu\ZYT-2-143_P1-B-1_01_50181.d Tune_pos_low_LC with calibration_2min_20210727.m ZYT-2-143


Acquisition Date 4/9/2024 7:18:28 PM

Operator ECNU-Chem Instrument

maXis impact 282001.00122

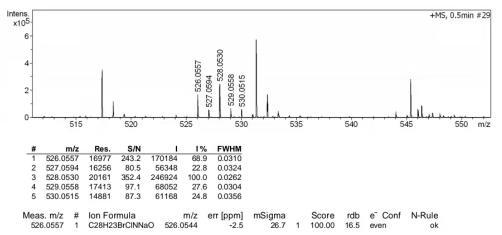
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste

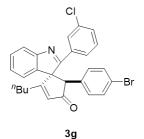
Bruker Compass DataAnalysis 4.1 printed: 4/11/2024 1:00:08 PM by: ECNU-Chem Page 1 of 1

Analysis Info

Analysis Name Method Sample Name

D:\Data\chem. dep\liulu\ZYT-2-131_P1-A-2_01_50334.d Tune_pos_low_LC with calibration_2min_20210727.m ZYT-2-131


Acquisition Date 4/12/2024 12:11:23 PM


Operator ECNU-Chem Instrument

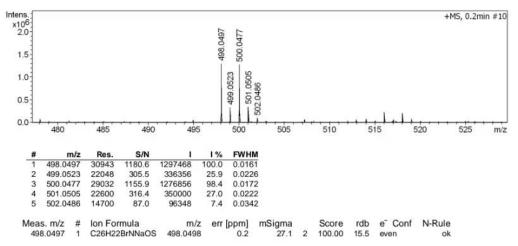
maXis impact 282001.00122

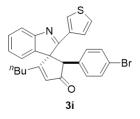
Comment Acquisition Parameter

Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min	
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste	
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar	

Bruker Compass DataAnalysis 4.1 printed: 4/12/2024 1:25:11 PM by: ECNU-Chem

Analysis Info

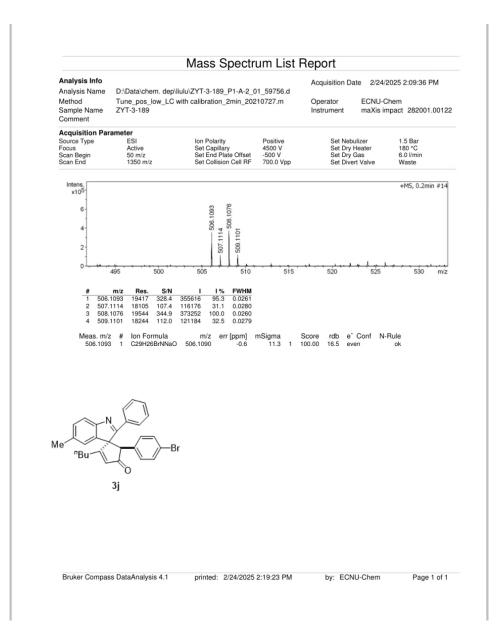

Analysis Name Method Sample Name Comment


Name D:\Data\chem. dep\liulu\ZYT-2-145_P1-B-5_01_50185.d Tune_pos_low_LC with calibration_2min_20210727.m Name ZYT-2-145 Acquisition Date 4/9/2024 7:31:02 PM

Operator ECNU-Chem Instrument maXis impact

maXis impact 282001.00122

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste



Bruker Compass DataAnalysis 4.1

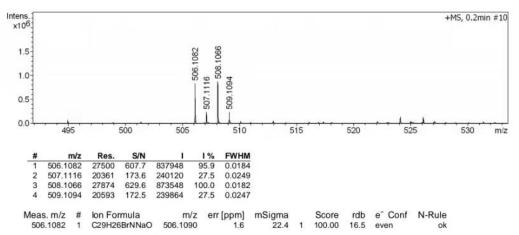
printed: 4/11/2024 12:48:36 PM

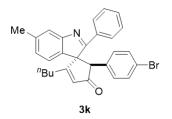
48:36 PM by: ECNU-Chem

Analysis Info

Method

D:\Data\chem. dep\liulu\ZYT-2-147_P1-B-7_01_50187.d Analysis Name Tune_pos_low_LC with calibration_2min_20210727.m ZYT-2-147 Sample Name Comment


Acquisition Date 4/9/2024 7:37:20 PM


ECNU-Chem Operator Instrument

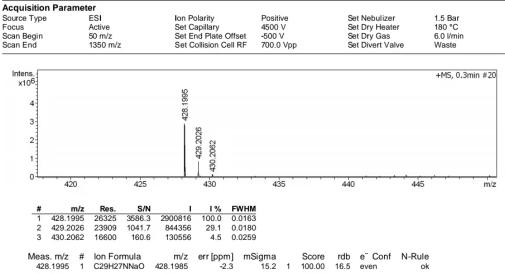
maXis impact 282001.00122

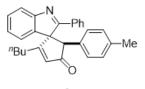
Page 1 of 1

Acquisition Paramete						
Source Type E	SI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar	
Focus A	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin 5	i0 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min	
Scan End 1	350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste	

Bruker Compass DataAnalysis 4.1 printed: 4/11/2024 1:01:58 PM by: ECNU-Chem

Analysis Info


D:\Data\chem. dep\liulu\ZYT-2-165_P1-B-9_01_50189.d Analysis Name Tune_pos_low_LC with calibration_2min_20210727.m ZYT-2-165


4/9/2024 7:43:36 PM Acquisition Date

ECNU-Chem Operator Instrument

maXis impact 282001.00122

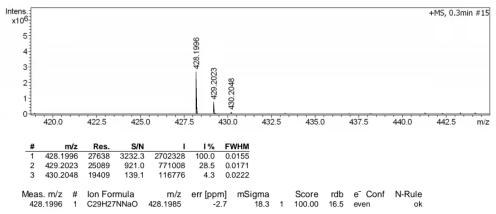
Method Sample Name Comment

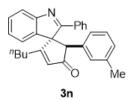
Bruker Compass DataAnalysis 4.1

printed: 4/11/2024 1:03:43 PM

by: ECNU-Chem Page 1 of 1

Analysis Info


Analysis Name Method Sample Name Comment


ame D:\Data\chem. dep\iulu\ZYT-2-189_P1-C-3_01_50197.d Tune_pos_low_LC with calibration_2min_20210727.m Ime ZYT-2-189 Acquisition Date 4/9/2024 8:25:24 PM

Operator ECNU-Chem

Instrument maXis impact 282001.00122

Acquisition Par	ameter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste

Bruker Compass DataAnalysis 4.1

printed: 4/11/2024 1:06:37 PM

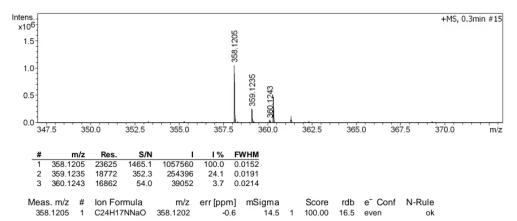
by: ECNU-Chem

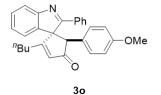
Page 1 of 1

S104

Analysis Info

Analysis Name D:\Data\chem. dep\liulu\ZYT-3-11_P1-A-5_01_50337.d Tune_pos_low_LC with calibration_2min_20210727.m ZYT-3-11


Acquisition Date 4/12/2024 12:20:48 PM


Operator ECNU-Chem Instrument maXis impact 282001.00122

Page 1 of 1

Method Sample Name Comment

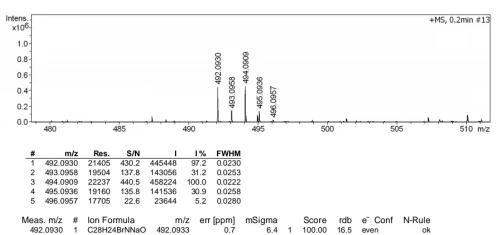
Acquisition Para	meter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min	
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste	

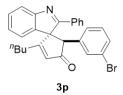
Bruker Compass DataAnalysis 4.1 printed: 4/12/2024 1:29:19 PM by: ECNU-Chem

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\chem. dep\liulu\ZYT-2-192_P1-C-2_01_50196.d Tune_pos_low_LC with calibration_2min_20210727.m ZYT-2-192


Acquisition Date 4/9/2024 8:22:16 PM


ECNU-Chem Operator Instrument

maXis impact 282001.00122

1.5 Bar 180 °C 6.0 I/min Waste

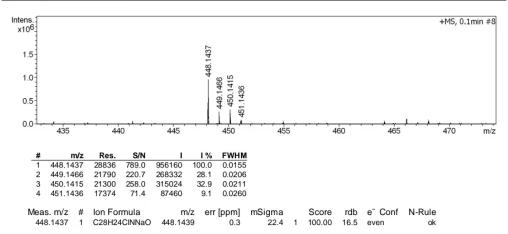
Acquisition Par	ameter			
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer
Focus	Active	Set Capillary	4500 V	Set Dry Heater
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve

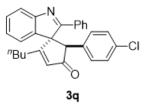
Bruker Compass DataAnalysis 4.1

printed: 4/11/2024 1:05:38 PM

by: ECNU-Chem

	Mass S	pectrum	List	Report
--	--------	---------	------	--------


Analysis Info	
Analysis Name	D:\Data\chem. dep\liulu\ZYT-2-164_P1-B-8_01_50188.d
Method	Tune_pos_low_LC with calibration_2min_20210727.m
Sample Name	ZYT-2-164
Comment	


Acquisition Date	4/9/2024 7:40:29 PM

ECNU-Chem maXis impact 282001.00122 Operator Instrument

Acquisition Parameter

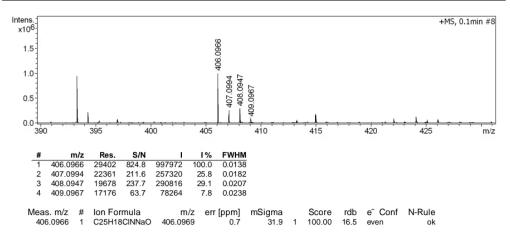
/ wquior i o i i a u u i i					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste

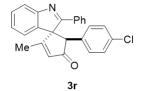
Bruker Compass DataAnalysis 4.1

printed: 4/11/2024 1:02:51 PM

by: ECNU-Chem

Analysis Info


Analysis Name Method Sample Name Comment


me D:\Data\chem. dep\iulu\ZYT-2-168_P1-C-4_01_50198.d Tune_pos_low_LC with calibration_2min_20210727.m ne ZYT-2-168 Acquisition Date 4/9/2024 8:28:33 PM

Operator ECNU-Chem

Instrument maXis impact 282001.00122

Acquisition Param	neter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste

Bruker Compass DataAnalysis 4.1 p

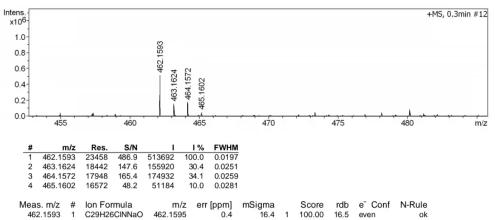
printed: 4/11/2024 1:07:24 PM

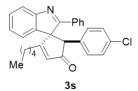
by: ECNU-Chem

Analysis Info

 Analysis Name
 D:\Data\chem. dep\iulu\ZYT-2-167_P1-A-1_01_50172.d

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m


 Sample Name
 ZYT-2-167


Acquisition Date 4/9/2024 6:50:14 PM

Operator ECNU-Chem Instrument maXis impact 282001.00122

Comment Acquisition Parameter

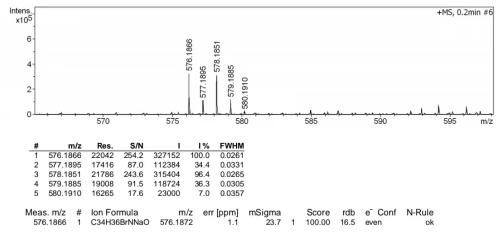
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste

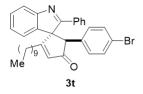
Bruker Compass DataAnalysis 4.1 printed: 4/10/2

printed: 4/10/2024 10:47:13 AM by: ECNU-Chem

Analysis Info

Analysis Name D:\Data\chem. dep\liulu\ZYT-2-94_P1-A-2_01_50173.d Method Tune_pos_low_LC with calibration_2min_20210727.m Sample Name ZYT-2-94


Acquisition Date 4/9/2024 6:53:22 PM


Operator ECNU-Chem Instrument

maXis impact 282001.00122

Comment

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste

Bruker Compass DataAnalysis 4.1 printed: 4/10/2024 10:49:10 AM by: ECNU-Chem Page 1 of 1

Analysis Info

Analysis Name Method Sample Name Comment

Acquisition Parameter

Name D:\Data\chem. dep\liulu\ZYT-2-73_P1-A-3_01_50174.d Tune_pos_low_LC with calibration_2min_20210727.m Name ZYT-2-73 Acquisition Date 4/9/2024 6:56:31 PM

Operator ECNU-Chem Instrument maXis impact 282

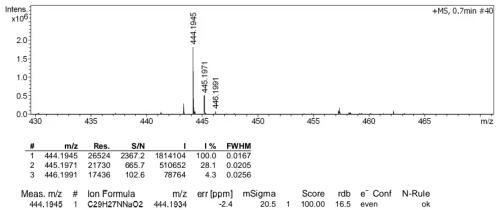
maXis impact 282001.00122

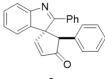
Source Type Focus Scan Begin Scan End		ESI Active 50 m/z 1350 m/z					Positive 4500 V -500 V 700.0 V			Set Set	Nebulizer Dry Heater Dry Gas Divert Valve	1 6	.5 Bar 80 °C .0 I/min Vaste	
Intens.													+MS, 0.2r	min #9
x10 ⁶														
2.5				N	-									
2.0				476.0617	478.0601									
-				0.0	8.0									
1.5				47		0								
1.0					477.0650	479.0630 0.0651								
0.5					11	- 479.06								
-					ĩ	1 8								
0.0 1 465		470		475		480			485	,	490	^ <u>`</u>	495	m/z
#	m/z	Res.	S/N	I.	1%	FWHM								
1	476.0617	30643	1074.0	1335940	98.1	0.0155								
2	477.0650	22691	287.9	358516	26.3	0.0210								
3	478.0601	30480	1091.7	1361860	100.0	0.0157								
4	479.0630	21382	283.2	353780	26.0	0.0224								
5	480.0651	15560	41.3	51632	3.8	0.0309								
	s.m/z # 5.0617 1	lon For C27H20	mula)BrNNaO	m/z 476.0620	err (p	opm] m 0.6	Sigma 17.4	1	Score 100.00	rdb 17.5	e [−] Conf even	N-Rule ok		

Br ò 3u

Bruker Compass DataAnalysis 4.1 printed: 4/10/2024 10:50:11 AM by: ECNU-Chem

Analysis Info


Analysis Name Method Sample Name Comment


D:\Data\chem. dep\liulu\ZYT-3-6_P1-A-6_01_50338.d Tune_pos_low_LC with calibration_2min_20210727.m ZYT-3-6 Acquisition Date 4/12/2024 12:23:58 PM

ECNU-Chem

Operator maXis impact 282001.00122 Instrument

Acquisition Par	ameter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste

3v

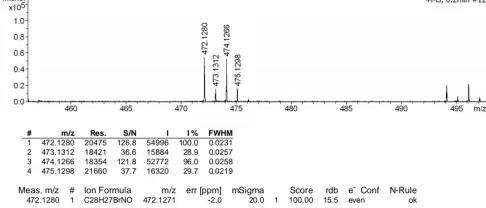
Bruker Compass DataAnalysis 4.1

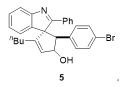
printed: 4/12/2024 1:28:21 PM

by: ECNU-Chem

Analysis Info

Analysis Name Method Sample Name Comment


Name D:\Data\chem. dep\liulu\ZYT-2-196-1_P1-A-7_01_49138.d Tune_pos_low_LC with calibration_2min_20210727.m Name ZYT-2-196-1 Acquisition Date 1/30/2024 4:02:01 PM


Instrument

Operator ECNU-Chem

maXis impact 282001.00122

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 I/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste
Intens.					+MS, 0.2min #12

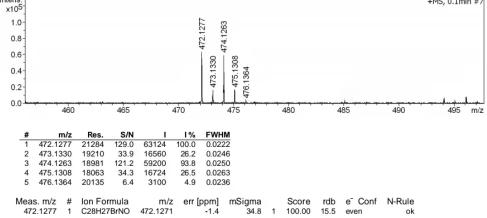
Bruker Compass DataAnalysis 4.1

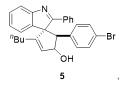
printed: 1/30/2024 4:06:53 PM

4:06:53 PM by: ECNU-Chem

Analysis Info

Analysis Name Method Sample Name Comment


ame D:\Data\chem. dep\\iulu\ZYT-2-196-2_P1-A-8_01_49139.d Tune_pos_low_LC with calibration_2min_20210727.m IMP ZYT-2-196-2 Acquisition Date 1/30/2024 4:05:09 PM

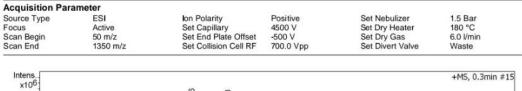

Operator ECNU-Chem Instrument maXis impact

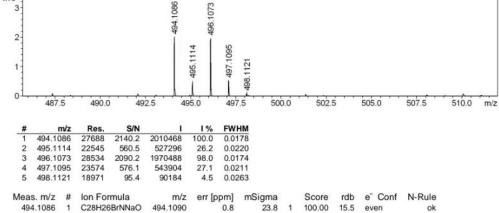
maXis impact 282001.00122

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 I/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste
Intens.					+MS, 0.1min #7

Bruker Compass DataAnalysis 4.1 printed: 1/30/2024 4:08:00 PM by: ECNU-Chem

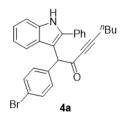

Analysis Info


Method


Analysis Name D:\Data\chem. dep\liulu\ZYT-2-199-1_P1-B-2_01_50449.d Tune_pos_low_LC with calibration_2min_20210727.m Sample Name ZYT-2-199-1 Comment

Acquisition Date 4/15/2024 1:58:55 PM

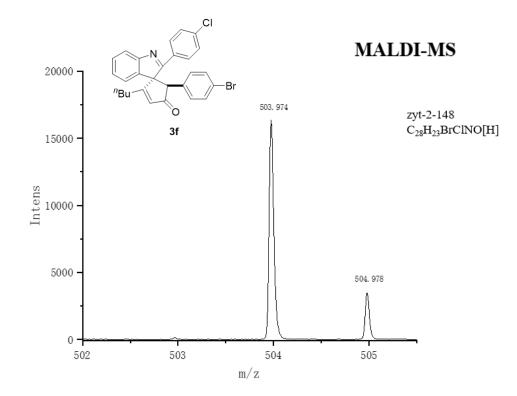
Operator ECNU-Chem maXis impact 282001.00122 Instrument

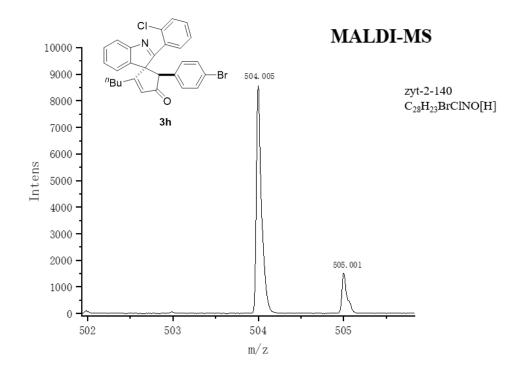


Bruker Compass DataAnalysis 4.1

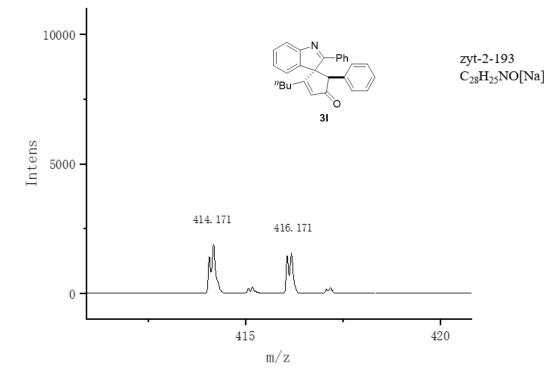
printed: 4/15/2024 3:18:22 PM

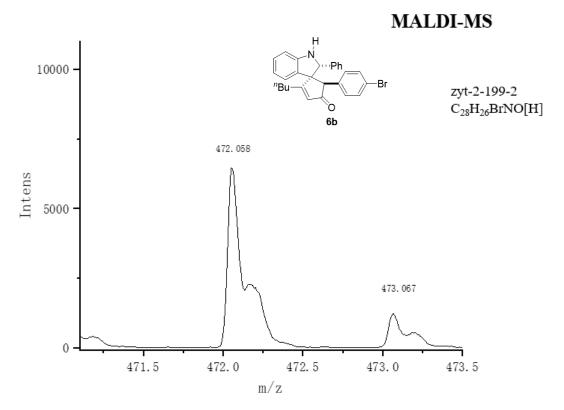
by: ECNU-Chem Page 1 of 1


		Mass Spectrum List Report												
Analysis Info									Acq	uisitior	n Date 6,	29/2023	2:36:01	РМ
Analysis Name	D:\Data\chem. dep\iulu\ZYT-2-39-2_P1-A-2_01_41896.d													
Method Sample Name Comment	Tune_pos_low_LC with calibration_2min_20210727.m ZYT-2-39-2							Operator ECNU-Chem Instrument maXis impact 282001.00122						
Acquisition Par	amet	er			1		2.19	/			1			
Source Type Focus Scan Begin Scan End		ESI Active 50 m/z 1350 m/z		Set E	apillary nd Plate	e Offset Cell RF	Positive 4500 V -500 V 700.0 V			Set I Set I	Nebulizer Dry Heater Dry Gas Divert Valve	1	5 Bar 30 °C .0 I/min /aste	
1.5 1.0 0.5				492.0935		495.0951							MS, 0.2n	
	48	35	4	190		495		500		5	505	51	D	m/z
2 493. 3 494.	m/z .0935 .0973 .0915 .0951	Res. 23279 18370 23406 17503	S/N 1628.4 443.5 1637.3 422.2	739208 201344 743524 191644	99.4 27.1 100.0 25.8	FWHM 0.0211 0.0268 0.0211 0.0283								
Meas. m/ 492.093		lon For C28H24	mula BrNNaO	m/z 492.0933		[ppm] r -0.3	nSigma 23.3	1	Score 100.00	rdb 16.5	e [−] Conf _{even}	N-Rule ok		



Bruker Compass DataAnalysis 4.1


printed: 6/29/2023 3:48:46 PM


by: ECNU-Chem

MALDI-MS

S118